BioControl

, Volume 51, Issue 3, pp 279–291 | Cite as

Dual Antagonism of Aldehydes and Epiphytic Bacteria from Strawberry Leaf Surfaces against the Pathogenic Fungus Botrytis cinerea in vitro

  • Daniel Abanda-Nkpwatt
  • Ursula Krimm
  • Lukas Schreiber
  • Wilfried Schwab
Article

Abstract

Dual culture experiments were conducted in vitro to evaluate the potential combined biological effect of epiphytic bacteria and plant volatiles formed during fatty acids degradation on the pathogenic fungus Botrytis cinerea. The aliphatic aldehydes hexanal, (E)-2-hexenal, (Z)-3-hexenal and (E)-2-nonenal showed an enhancing effect on the antagonistic interaction between the epiphytic bacteria Pseudomonas lurida, Pseudomonas rhizosphaerae, Pseudomonas parafulva, and Bacillus megaterium against the pathogenic fungus. The unsaturated aldehydes were found to be the most potent with the minimum effective concentration being 1 ppm. Increasing volatile concentrations led to the inhibition of Botrytis cinerea growth with concomitant increase of colony diameters of epiphytic bacteria. Especially (E)-2-nonenal showed a stronger inhibitory effect on different strains of the plant pathogenic fungus Botrytis cinerea than on the epiphytic bacteria. These results suggest that co-application of antagonistic bacteria with natural plant volatiles can enhance the effectiveness of the biocontrol agents against B. cinerea.

Keywords

Botrytis cinerea dual cultures epiphytic bacteria α,β-unsaturated aldehydes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen R.A., Hamilton-Kemp T.R., Hildebrand D.F., McCracken C.T., Collins R.W. and Fleming P.D. (1994). Structure–antifungal activity relationships among volatile C6 and C9 aliphatic aldehydes, ketones, and alcohols. J. Agric. Food Chem. 42: 1563–1568CrossRefGoogle Scholar
  2. Bisignano G., Lagana M.G., Trombetta D., Arena S., Nostro A., Uccella N., Mazzanti G. and Saija A. (2001). In vitro antibacterial activity of some aliphatic aldehydes from Olea europaea. FEMS Microbiol. Lett. 198: 9–13PubMedCrossRefGoogle Scholar
  3. Deng W., Hamilton-Kemp T.R., Nielsen M.T., Andersen R.A., Collins G.B. and Hildenbrand D.F. (1993). Effects of six-carbon aldehydes and alcohols on bacterial proliferation. J. Agric. Food Chem. 41: 506–510CrossRefGoogle Scholar
  4. Guinebretiere M.H., Nguyen-The C., Morrison N., Reich M. and Nicot P. (2000). Isolation and characterization of antagonists for the control of the postharvest wound pathogen Botrytis cinerea on strawberry fruits. J. Food Prot. 63: 386–394PubMedGoogle Scholar
  5. Hamilton-Kemp T.R., Archbold D.D., Loughrin J.H., Andersen R.A., McCracken C.T., Collins R.W. and Fallik E. (2000). Stimulation and inhibition of fungal pathogens of plants by natural volatile phytochemicals and their analogs. Curr. Top. Phytochem. 4: 95–104Google Scholar
  6. Kubo A., Lunde C.S. and Kubo I. (1995). Antimicrobial activity of the olive oil flavor compounds. J. Agric. Food Chem. 43: 1629–1633CrossRefGoogle Scholar
  7. Kubo J., Lee J.R. and Kubo I. (1999). Anti-Helicobacter pylori agents from the cashew apple. J. Agric. Food Chem. 47: 533–537PubMedCrossRefGoogle Scholar
  8. Kubo I., Fujita K.-I., Kubo A., Nihei K.-H. and Lunde C.S. (2003). Modes of antifungal action of 2(E)-alkenals against Saccharomyces cerevisiae. J. Agric. Food Chem. 51: 3951–3957PubMedCrossRefGoogle Scholar
  9. Lindow S.E. and Brandl M.T. (2003). Microbiology of the Phyllosphere. Appl. Environ. Microbiol. 69: 1875–1883PubMedCrossRefGoogle Scholar
  10. Montealegre J.R., Reyes R., Perez L.M., Herrera R., Silvia P. and Besoain X. (2003). Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato. Environ. Biotechnol. 6: 1–8Google Scholar
  11. Urbasch I. (1984). Production of C6-wound gases by plants and the effect on some phytopathogenic fungi. Z. Naturforsch. 39: 1003–1007Google Scholar
  12. Urbasch I. (1987). Transformation of trans-2-hexenal by Botrytis cinerea PERS as detoxification mechanisms. Z. Naturforsch. 42: 64–68Google Scholar
  13. Vaughn S.F., Spencer G.F. and Shasha B.S. (1993). Volatile compounds from raspberry and strawberry fruit inhibit postharvest decay fungi. J. Food Sci. 58: 793–796CrossRefGoogle Scholar
  14. Wilson C.L., Franklin J.D. and Otto B.E. (1987). Fruit volatiles inhibitory to Monilinia fructicola and Botrytis cinerea. Plant Dis. 71: 316–319CrossRefGoogle Scholar
  15. Wilson M. and Lindow S.E. (1994). Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl. Environ. Microbiol. 60: 4468–4477PubMedGoogle Scholar

Copyright information

© IOBC 2006

Authors and Affiliations

  • Daniel Abanda-Nkpwatt
    • 1
  • Ursula Krimm
    • 2
  • Lukas Schreiber
    • 2
  • Wilfried Schwab
    • 1
  1. 1.Biomolecular Food TechnologyTechnical University MunichFreisingGermany
  2. 2.Institute of Cellular and Molecular Botany (IZMB)University of BonnBonnGermany

Personalised recommendations