BioControl

, Volume 51, Issue 1, pp 31–48 | Cite as

Biological Activity of Cry1Ab Toxin Expressed by Bt Maize Following Ingestion by Herbivorous Arthropods and Exposure of the Predator Chrysoperla carnea

Article

Abstract

A major concern regarding the deployment of insect resistant transgenic plants is their potential impact on non-target organisms, in particular on beneficial arthropods such as predators. To assess the risks that transgenic plants pose to predators, various experimental testing systems can be used. When using tritrophic studies, it is important to verify the actual exposure of the predator, i.e., the presence of biologically active toxin in the herbivorous arthropod (prey). We therefore investigated the uptake of Cry1Ab toxin by larvae of the green lacewing (Chrysoperla carnea (Stephens); Neuroptera: Chrysopidae) after consuming two Bt maize-fed herbivores (Tetranychus urticae Koch; Acarina: Tetranychidae and Spodoptera littoralis (Boisduval); Lepidoptera: Noctuidae) by means of an immunological test (ELISA) and the activity of the Cry1Ab toxin following ingestion by the herbivores. Moreover, we compared the activity of Cry1Ab toxin produced by Bt maize to that of purified toxin obtained from transformed Escherichia coli, which is recommended to be used in toxicity studies. The activity of the toxin was assessed by performing feeding bioassays with larvae of the European corn borer (Ostrinia nubilalis (Hübner); Lepidoptera: Crambidae), the target pest of Cry1Ab expressing maize. ELISA confirmed the ingestion of Bt toxin by C. carnea larvae when fed with either of the two prey species and feeding bioassays using the target pest showed that the biological activity of the Cry1Ab toxin is maintained after ingestion by both herbivore species. These findings are discussed in the context of previous risk assessment studies with C. carnea. The purified Cry1Ab protein was more toxic to O. nubilalis compared to the plant-derived Cry1Ab toxin when applied at equal concentrations according to ELISA measurements. Possible reasons for these findings are discussed.

Keywords

biological activity Chrysopidae ELISA Neuroptera non-target effects risk assessment transgenic plants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appel, H.M., Schultz, J.C. 1994Oak tannins reduce effectiveness of Thuricide (Bacillus thuringiensis) in the gypsy-moth (Lepidoptera, Lymantriidae)J. Econ. Entomol.8717361742Google Scholar
  2. Armer, C.A., Berry, R.E., Kogan, M. 2000Longevity of phytophagous heteropteran predators feeding on transgenic Btt-potato plantsEnt. Exp. Appl.95329333Google Scholar
  3. Ashouri, A., Michaud, D., Cloutier, C. 2001Recombinant and classically selected factors of potato plant resistance to the Colorado potato beetle, Leptinotarsa decemlineata, variously affect the potato aphid parasitoid Aphidius nigripesBioControl46401418CrossRefGoogle Scholar
  4. Bathon, H., Singh, P., Clare, G.K. 1991

    Rearing methods

    Geest, L.P.S.Evenhuis, H.H. eds. Torticid Pests, Their Biology, Natural Enemies and ControlElsevierAmsterdam, NL283293
    Google Scholar
  5. Bell, H.A., Down, R.E., Fitches, E.C., Edwards, J.P., Gatehouse, A.M.R. 2003Impact of genetically modified potato expressing plant-derived insect resistance genes on the predatory bug Podisus maculiventris (Heteroptera: Pentatomidae)Biocontrol Sci. Technol.13729741CrossRefGoogle Scholar
  6. Ben-Dov, E., Saxena, D., Wang, Q., Manasherob, R., Boussiba, S., Zaritsky, A. 2003Ingested particles reduce susceptibility of insect larvae to Bacillus thuringiensisJ. Appl. Entomol.127146152CrossRefGoogle Scholar
  7. Bernal, J.S., Griset, J.G., Gillogly, P.O. 2002Impacts of developing on Bt maize-intoxicated hosts on fitness parameters of a stem borer parasitoidJ. Entomol. Sci.372740Google Scholar
  8. Choma, C.T., Surewicz, W.K., Carey, P.R., Pozsgay, M., Raynor, T., Kaplan, H. 1990Unusual proteolysis of the protoxin and toxin from Bacillus thuringiensis – structural implicationsEur. J. Biochem.189523527CrossRefPubMedGoogle Scholar
  9. Cohen, A.C. 1995Extraoral digestion in predaceous terrestrial arthropodaAnnu. Rev. Entomol.4085103CrossRefGoogle Scholar
  10. Couty, A., Vina, G., Clark, S.J., Kaiser, L., Pham Delegue, M.H., Poppy, G.M. 2001Direct and indirect sublethal effects of Galanthus nivalis agglutinin (GNA) on the development of a potato-aphid parasitoid, Aphelinus abdominalis (Hymenoptera: Aphelinidae)J. Insect Physiol.47553561PubMedGoogle Scholar
  11. Cowgill, S.E., Atkinson, H.J. 2003A sequential approach to risk assessment of transgenic plants expressing protease inhibitors: effects on nontarget herbivorous insectsTransgenic Res.12439449CrossRefPubMedGoogle Scholar
  12. Dutton, A., Klein, H., Romeis, J., Bigler, F. 2002Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carneaEcol. Entomol.27441447CrossRefGoogle Scholar
  13. Dutton, A., Romeis, J., Bigler, F. 2003Assessing the risks of insect resistant transgenic plants on entomophagous arthropods: Bt-maize expressing Cry1Ab as a case studyBioControl48611636CrossRefGoogle Scholar
  14. Dutton, A., Romeis, J., Bigler, F. 2005Effects of Bt-maize expressing Cry1Ab and Bt-spray on Spodoptera littoralis (Lepidoptera: Noctuidae)Entomol. Exp. Appl.114161170CrossRefGoogle Scholar
  15. Federici, B.A. 2002

    Case study: Bt crops. A novel mode of insect resistance

    Atherton, K. eds. Genetically Modified Crops: Assessing SafetyTaylor and Francis GroupLondon, UK164200
    Google Scholar
  16. Gill, S.S., Cowles, E.A., Pietrantonio, P.V. 1992The mode of action of Bacillus thuringiensis endotoxinsAnnu. Rev. Entomol.37615636CrossRefPubMedGoogle Scholar
  17. Groot, A.T., Dicke, M. 2002Insect-resistant transgenic plants in a multi-trophic contextPlant J.31387406CrossRefPubMedGoogle Scholar
  18. Head, G., Brown, C.R., Groth, M.E., Duan, J.J. 2001Cry1Ab protein levels in phytophagous insects feeding on transgenic corn: implications for secondary exposure risk assessmentEntomol. Exp. Appl.993745CrossRefGoogle Scholar
  19. Hilbeck, A., Moar, W.J., Pusztai Carey, M., Filippini, A., Bigler, F. 1998aToxicity of Bacillus thuringiensis Cry1Ab toxin to the predator Chrysoperla carnea (Neuroptera: Chrysopidae)Environ. Entomol.2712551263Google Scholar
  20. Hilbeck, A., Baumgartner, M., Fried, P.M., Bigler, F. 1998bEffects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae)Environ. Entomol.27480487Google Scholar
  21. Koziel, M.G., Beland, G.L., Bowman, C., Carozzi, N.B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., Maddox, D., Mcpherson, K., Meghji, M.R., Merlin, E., Rhodes, R., Warren, G.W., Wright, M., Evola, S.V. 1993Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensisBio Technol.11194200Google Scholar
  22. MacIntosh, S.C., Stone, T.B., Sims, S.R., Hunst, P.L., Greenplate, J.T., Marrone, P.G., Perlak, F.J., Fischhoff, D.A., Fuchs, R.L. 1990Specificity and efficacy of purified Bacillus thuringiensis proteins against agronomically important insectsJ. Invertebr. Pathol.56258266PubMedGoogle Scholar
  23. Marcon, P.C.R.G., Young, L.J., Steffey, K.L., Siegfried, B.D. 1999Baseline susceptibility of European corn borer (Lepidoptera: Crambidae) to Bacillus thuringiensis toxinsJ. Econ. Entomol.92279285Google Scholar
  24. Mendelsohn, M., Kough, J., Vaituzis, Z., Matthews, K. 2003Are Bt crops safe?Nat. Biotechnol.2110031009CrossRefPubMedGoogle Scholar
  25. Obrist, L.B., Klein, H., Dutton, A., Bigler, F. 2005Effects of Bt maize on Frankliniella tenuicornis and exposure of thrips predators to prey-mediated Bt toxinEntomol. Exp. Appl.115409416CrossRefGoogle Scholar
  26. O’Callaghan, M., Glare, T.R., Burgess, E.P.J., Malone, L.A. 2005Effects of plants genetically modified for insect resistance on nontarget organismsAnnu. Rev. Entomol.50271292PubMedGoogle Scholar
  27. Olsen, K.M., Daly, J.C. 2000Plant–toxin interactions in transgenic Bt cotton and their effect on mortality of Helicoverpa armigera (Lepidoptera: Noctuidae)J. Econ. Entomol.9312931299PubMedGoogle Scholar
  28. Palm, C.J., Donegan, K., Harris, D., Seidler, R.J. 1994Quantification in soil of Bacillus-thuringiensis var kurstaki delta-endotoxin from transgenic plantsMol. Ecol.3145151Google Scholar
  29. Pang, A.S.D., Gringorten, J.L., Bai, C. 1999Activation and fragmentation of Bacillus thuringiensis delta-endotoxin by high concentrations of proteolytic enzymesCan. J. Microbiol.45816825CrossRefPubMedGoogle Scholar
  30. Poppy, G.M., Sutherland, J.P. 2004Can biological control benefit from genetically-modified crops? Tritrophic interactions on insect-resistant transgenic plantsPhysiol. Entomol.29257268CrossRefGoogle Scholar
  31. Principi, M.M., Canard, M. 1984

    Feeding habits

    Canard, M.Séméria, Y.New, T.R. eds. Biology of ChrysopidaeDr. W. Junk PublishersThe Hague, NL7692
    Google Scholar
  32. Pusztai-Carey, M.P., T. Lessare and M. Yaguchi, 1994. U.S. Patent 5356788.Google Scholar
  33. Raps, A., Kehr, J., Gugerli, P., Moar, W.J., Bigler, F., Hilbeck, A. 2001Immunological analysis of phloem sap of Bacillus thuringiensis corn and of the nontarget herbivore Rhopalosiphum padi (Homoptera: Aphididae) for the presence of Cry1AbMol. Ecol.10525533CrossRefPubMedGoogle Scholar
  34. Rodrigo, A., C. Avilla, J.E. Conzález-Zamora and J. Ferré, 2004. Histopathological and prey-mediated effects of Bacillus thuringiensis Cry toxins on the predator Chrysoperla carnea (Neuroptera: Chrysopidae). Eighth International Symposium on the Biosafety of Genetically Modified Organisms, September 26–30, 2004, Montpellier, France. 253 pp.Google Scholar
  35. Romeis, J., Dutton, A., Bigler, F. 2004Bacillus thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae)J. Insect Physiol.50175183CrossRefPubMedGoogle Scholar
  36. Sims, S.R., Holden, L.R. 1996Insect bioassay for determining soil degradation of Bacillus thuringiensis subsp. kurstaki CryIA(b) protein in corn tissueEnviron. Entomol.25659664Google Scholar
  37. Sivamani, E., Rajendran, N., Senrayan, R., Ananthakrishnan, T.N., Jayaraman, K. 1992Influence of some plant phenolics on the activity of delta-endotoxin of Bacillus thuringiensis var galleriae on Heliothis armigeraEntomol. Exp. Appl.63243248CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • L. B. Obrist
    • 1
  • A. Dutton
    • 1
    • 2
  • J. Romeis
    • 1
  • F. Bigler
    • 1
  1. 1.Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and AgricultureZurichSwitzerland
  2. 2.Syngenta Crop Protection AGSteinSwitzerland

Personalised recommendations