Biology Bulletin

, Volume 32, Issue 4, pp 321–330 | Cite as

Homologous Protein Domains in Superkingdoms Archaea, Bacteria, and Eukaryota and the Problem of the Origin of Eukaryotes

  • A. V. Markov
  • A. M. Kulikov
Theoretical Biology
  • 54 Downloads

Abstract

The distribution of protein domains was analyzed in superkingdoms Archaea, Bacteria, and Eukaryota. About a half of eukaryotic domains have prokaryotic origin. Many domains related to information processing in the nucleocytoplasm were inherited from archaea. Sets of domains associated with metabolism and regulatory and signaling systems were inherited from bacteria. Many signaling and regulatory domains common for bacteria and eukaryotes were responsible for the cellular interaction of bacteria with other components of the microbial community but were involved in coordination of the activity of eukaryotic organelles and cells in multicellular organisms. Many eukaryotic domains of bacterial origin could not originate from ancestral mitochondria and plastids but rather were adopted from other bacteria. An archaeon with the induced incorporation of alien genetic material could be the ancestor of the eukaryotic nucleocytoplasm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Brocks, J.J., Logan, G.A., Buick, R., and Summons, R.E., Archean Molecular Fossils and the Early Rise of Eukaryotes, Science, 1999, vol. 285, no.5430, pp. 1025–1027.CrossRefPubMedGoogle Scholar
  2. Canback, B., Andersson, S.G.E., and Kurland, C.G., The Global Phylogeny of Glycolytic Enzymes, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no.9, pp. 6097–6102.CrossRefPubMedGoogle Scholar
  3. Dolan, M.F., Melnitsky, H., Margulis, L., and Kolnicki, R., Motility Proteins and the Origin of the Nucleus, Anat. Rec., 2002, no. 268, pp. 290–301.Google Scholar
  4. Dyall, S.D., Brown, M.T., and Johnson, P.J., Ancient Invasions: From Endosymbionts to Organelles, Science, 2004, vol. 304, no.5668, pp. 253–257.CrossRefPubMedGoogle Scholar
  5. Emelyanov, V.V., Mitochondrial Connection to the Origin of the Eukaryotic Cell, Eur. J. Biochem., 2003, vol. 270, no.8, pp. 1599–1618.CrossRefPubMedGoogle Scholar
  6. Esser, C., Ahmadinejad, N., Wiegand, C., et al., A Genome Phylogeny for Mitochondria among Alpha-Proteobacteria and a Predominantly Eubacterial Ancestry of Yeast Nuclear Genes, Mol. Biol. Evol., 2004, vol. 21, no.9, pp. 1643–1660.CrossRefPubMedGoogle Scholar
  7. Feng, D.F., Cho, G., and Doolittle, R.F., Determining Divergence Times with a Protein Clock: Update and Reevaluation, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, no.24, pp. 13028–13033.CrossRefPubMedGoogle Scholar
  8. Gabaldon, T. and Huynen, M.A., Reconstruction of the Proto-Mitochondrial Metabolism, Science, 2003, vol. 301, no.5633, p. 609.CrossRefPubMedGoogle Scholar
  9. Gupta, R.S., Protein Phylogenies and Signature Sequences: A Reappraisal of Evolutionary Relationships among Archaebacteria, Eubacteria, and Eukaryotes, Microbiol Mol. Biol. Rev., 1998, vol. 62, no.4, pp. 1435–1491.PubMedGoogle Scholar
  10. Gusev, M.V. and Mineeva, L.A., Mikrobiologiya (Microbiology), Moscow: Mosk. Gos. Univ., 1992, 3rd ed.Google Scholar
  11. Hartman, H. and Fedorov, A., The Origin of the Eukaryotic Cell: a Genomic Investigation, Proc. Nat. Acad. Sci. USA, 2002, vol. 99, no.3, pp. 1420–1425.CrossRefGoogle Scholar
  12. Helenius, A. and Aebi, M., Intracellular Functions of N-Linked Glycans, Science, 2001, vol. 291, no.5512, pp. 2364–2369.CrossRefPubMedGoogle Scholar
  13. Jenkins, C., Samudrala, R., Anderson, I., et al., Genes for the Cytoskeletal Protein Tubulin in the Bacterial Genus Prosthecobacter, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no.26, pp. 17049–17054.CrossRefPubMedGoogle Scholar
  14. Kurland, C.G. and Andersson, S.G.E., Origin and Evolution of the Mitochondrial Proteome, Microbiol. Mol. Biol. Rev., 2000, vol. 64, no.4, pp. 786–820.CrossRefPubMedGoogle Scholar
  15. Margulis, L., Rol’ simbioza v evolyutsii kletki (The Role of Symbiosis in Evolution of the Cell), Moscow: Mir, 1983.Google Scholar
  16. Margulis, L., Dolan, M.F., and Guerrero, R., The Chimeric Eukaryote: Origin of the Nucleus from the Karyomastigont in Amitochondriate Protists, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no.13, pp. 6954–6959.CrossRefPubMedGoogle Scholar
  17. Markov, A.V., On the Origin of the Eukaryotic Cell, Paleontol. Zh., 2005, vol. 39, no.2.Google Scholar
  18. Martin, W., Gene Transfer from Organelles To the Nucleus: Frequent and in Big Chunks, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, no.15, pp. 8612–8614.CrossRefPubMedGoogle Scholar
  19. Martin, W. and Muller, M., The Hydrogen Hypothesis for the First Eukaryote, Nature, 1998, no. 392, pp. 37–41.Google Scholar
  20. Martin, W. and Russell, M.J., On the Origins of Cells: A Hypothesis for the Evolutionary Transitions from Abiotic Geochemistry to Chemoautotrophic Prokaryotes, and from Prokaryotes to Nucleated Cells, Phil. Trans. R. Soc. Lond. B Biol. Sci., 2003, vol. 358, no.1429, pp. 59–85.CrossRefGoogle Scholar
  21. Mayer, F., Cytoskeletons in Prokaryotes, Cell. Biol. Int., 2003, vol. 27, no.5, pp. 429–438.CrossRefPubMedGoogle Scholar
  22. Ng, W.V., Kennedy, S.P., Mahairas, G.G., et al., Genome Sequence of Halobacterium Species NRC-1, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no.22, pp. 12176–12181.CrossRefPubMedGoogle Scholar
  23. Noon, K.R., Guymon, R., Crain, P.F., et al., Influence of Temperature on tRNA Modification in Archaea: Methanococcoides burtonii (Optimum Growth Temperature [T opt], 23 Degrees C) and Stetteria hydrogenophila (T opt, 95 Degrees C), J. Bacteriol., 2003, vol. 185, no.18, pp. 5483–5490.CrossRefPubMedGoogle Scholar
  24. Slesarev, A.I., Belova, G.I., Kozyavkin, S.A., and Lake, J.A., Evidence for an Early Prokaryotic Origin of Histones H2A and H4 prior To the Emergence of Eukaryotes, Nucleic Acid Res., 1998, vol. 26, no.2, pp. 427–430.CrossRefPubMedGoogle Scholar
  25. Theissen, U., Hoffmeister, M., Grieshaber, M., and Martin, W., Single Eubacterial Origin of Eukaryotic Sulfide: Quinone Oxidoreductase, a Mitochondrial Enzyme Conserved from the Early Evolution of Eukaryotes during Anoxic and Sulfidic Times, Mol. Biol. Evol., 2003, vol. 20, no.9, pp. 1564–1574.CrossRefPubMedGoogle Scholar
  26. Van den Ent, F., Amos, L.A., and Lowe, J., Prokaryotic Origin of the Actin Cytoskeleton, Nature, 2001, vol. 413, no.6851, pp. 39–44.CrossRefPubMedGoogle Scholar
  27. Vellai, T. and Vida, G., The Origin of Eukaryotes: the Difference between Prokaryotic and Eukaryotic Cells, Proc. R. Soc. Lond. B Biol. Sci., 1999, vol. 266, no.1428, pp 1571–1577.CrossRefGoogle Scholar
  28. Walden, W.E., From Bacteria to Mitochondria: Aconitase Yields Surprises, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no.7, pp. 4138–4140.CrossRefPubMedGoogle Scholar
  29. Zavarzin, G.A., Development of Microbial Communities in the Earth’s History, in Problemy doantropogennoi evolyutsii biosfery (Problems of Pre-anthropogenic Evolution of the Biosphere), Moscow: Nauka, 1993, pp. 212–222.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • A. V. Markov
    • 1
  • A. M. Kulikov
    • 2
  1. 1.Paleontological InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Kol’tsov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations