Skip to main content

Advertisement

Log in

An overview of two decades of diet restriction studies using Drosophila

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Dietary restriction (DR) is a potent forerunner in aging studies capable of influencing lifespan and improving health in various model organisms even in their old age. Despite the importance of protein and carbohydrates in the diet (regulation of fecundity and body maintenance respectively), different ratio based combinations of these components has played a major role in lifespan extension studies. In spite of differences existing in dietary protocols across laboratories, diet manipulations have evolved as a major area of research in Drosophila lifespan studies, prominently shedding light on the multi-faceted process over the last two decades. Here, we review various advances and technicalities involved in understanding the DR-mediated lifespan alongside discussing the pros and cons of various existing approaches/diets used across labs. The current review also focuses on the importance of life-stage specific DR implementation and their influence on the life-history traits including lifespan and fecundity, by taking examples of results from different studies comprising diet dilution, calorie restriction, protein restriction, carbohydrate: protein ratios and the modulations in various minor diet components. We thereby intend to gather the major advances made in these fields alongside reviewing the practical implementations that need to be made to get a better view of the DR-mediated lifespan studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AL:

ad libitum

CR:

Calorie restriction

DR:

Diet restriction

EAA:

Essential amino acid

IF:

Intermittent feeding

LE:

Lifespan extension

Met:

Methionine

NEAA:

Non-essential amino acid

P:C:

Protein:Carbohydrate

SY:

Sugar, yeast

TOR:

Target of rapamycin

Trp:

Tryptophan

References

  • Aguila JR, Hoshizaki DK, Gibbs AG (2013) Contribution of larval nutrition to adult reproduction in Drosophila melanogaster. J Exp Biol 216:399–406

    PubMed  Google Scholar 

  • Allison BJ, Kaandorp JJ, Kane AD, Camm EJ et al (2016) Divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease. FASEB J 30:1968–1975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen LH, Kristensen TN, Loeschcke V, Toft S, Mayntz D (2010) Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. J Insect Physiol 56:336–340

    CAS  PubMed  Google Scholar 

  • Anisimov VN, Zabezhinski MA, Popovich IG et al (2010) Rapamycin extends maximal lifespan in cancer prone mice. Am J Pathol 176:2092–2097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anisimov VN, Berstein LM, Popovich IG, Zabezhinski MA et al (2011) If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice. Aging (Albany, NY) 3:148–157

    CAS  Google Scholar 

  • Bahadorani S, Bahadorani P, Phillips JP, Hilliker AJ (2008) The effects of vitamin supplementation on Drosophila life span under normoxia and under oxidative stress. J Gerontol A 63:35–42

    Google Scholar 

  • Baker GT 3rd (1993) Effects of various antioxidants on aging in Drosophila. Toxicol Ind Health 9:163–186

    CAS  PubMed  Google Scholar 

  • Balasubramanian P, Howell PR, Anderson RM (2017) Aging and caloric restriction research: a biological perspective with translational potential. EBioMedicine 21:37–44

    PubMed  PubMed Central  Google Scholar 

  • Banerjee KK, Ayyub C, Ali SZ, Mandot V et al (2012) dSir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner. Cell Rep 2:1485–1491

    CAS  PubMed  Google Scholar 

  • Barnes AI, Wigby S, Boone JM, Partridge L et al (2008) Feeding, fecundity and lifespan in female Drosophila melanogaster. Proc R Soc B 275:1675–1683

    PubMed  PubMed Central  Google Scholar 

  • Bass TM, Grandison RC, Wong R, Martinez P et al (2007) Optimization of Dietary Restriction Protocols in Drosophila. J Gerontol A 62:1071–1081

    Google Scholar 

  • Bauer JH, Morris SN, Chang C, Flatt T et al (2009) dSir2 and Dmp53 interact to mediate aspects of CR-dependent lifespan extension in D. melanogaster. Aging (Albany, NY) 1:38–48

    CAS  Google Scholar 

  • Bjedov I, Toivonen JM, Kerr F, Slack C et al (2010) Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 11:35–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bjorksten J (1968) The crosslinkage theory of aging. J Am Geriatr Soc 16:408–427

    CAS  PubMed  Google Scholar 

  • Blatch SA, Meyer KW, Harrison JF (2010) Effects of dietary folic acid level and symbiotic folate production on fitness and development in the fruit fly Drosophila melanogaster. Fly (Austin) 4:312–319

    CAS  Google Scholar 

  • Bonafè M, Barbieri M, Marchegiani F, Olivieri F et al (2003) Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide -kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metab 88:3299–3304

    PubMed  Google Scholar 

  • Brandt T, Mourier A, Tain LS, Partridge L et al (2017) Changes of mitochondrial ultrastructure and function during ageing in mice and Drosophila. Elife 6:e24662

    PubMed  PubMed Central  Google Scholar 

  • Britton JS, Lockwood WK, Li L, Cohen SM et al (2002) Drosophila’s insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev Cell 2:239–249

    CAS  PubMed  Google Scholar 

  • Broughton SJ, Piper MD, Ikeya T, Bass TM et al (2005) Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. PNAS 102:3105–3110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broughton SJ, Slack C, Alic N, Metaxakis A et al (2010) DILP-producing median neurosecretory cells in the Drosophila brain mediate the response of lifespan to nutrition. Aging Cell 9:336–346

    CAS  PubMed  Google Scholar 

  • Bruce KD, Hoxha S, Carvalho GB, Yamada R et al (2013) High carbohydrate-low protein consumption maximizes Drosophila lifespan. Exp Gerontol 48:1129–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruss MD, Khambatta CF, Ruby MA, Aggarwal I, Hellerstein MK (2010) Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates. Am J Physiol Endocrinol Metab 298:E108–E116

    CAS  PubMed  Google Scholar 

  • Burger JM, Hwangbo DS, Corby-Harris V, Promislow DE (2007) The functional costs and benefits of dietary restriction in Drosophila. Aging Cell 6:63–71

    CAS  PubMed  Google Scholar 

  • Burnett C, Valentini S, Cabreiro F, Goss M et al (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477:482–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cabreiro F, Au C, Leung KY, Vergara-Irigaray N et al (2013) Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153:228–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho GB, Kapahi P, Benzer S (2005) Compensatory ingestion upon dietary restriction in Drosophila melanogaster. Nat Methods 2:813–815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho GB, Drago I, Hoxha S, Yamada R, Mahneva O, Bruce KD, Soto Obando A, Conti B, Ja WW (2017) The 4E-BP growth pathway regulates the effect of ambient temperature on Drosophila metabolism and lifespan. Proc Natl Acad Sci USA 114:9737–9742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Catterson JH, Khericha M, Dyson MC, Vincent AJ et al (2018) Short-term, intermittent fasting induces long-lasting gut health and TOR-independent lifespan extension. Curr Biol 28:1714–1724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman T, Partridge L (1996) Female fitness in Drosophila melanogaster: an interaction between the effect of nutrition and of encounter rate with males. Proc Biol Sci 263:755–759

    CAS  PubMed  Google Scholar 

  • Chapman T, Bangham J, Vinti G, Saifried B et al (2003) The sex peptide of Drosophila melanogaster: female post-mating responses analyzed by using RNA interference. PNAS 100:9923–9928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Lee AY, Bowens NM, Huber R et al (2002) Fighting fruit flies: a model system for the study of aggression. PNAS 99:5664–5668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chippindale AK, Leroi AM, Kim SB, Borash DJ et al (1993) Phenotypic plasticity and selection in Drosophila life-history evolution. I. Nutrition and the cost of reproduction. J Evol Biol 6:171–193

    Google Scholar 

  • Clancy DJ, Gems D, Harshman LG, Oldham S et al (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106

    CAS  PubMed  Google Scholar 

  • Clancy DJ, Gems D, Hafen E, Leevers SJ, Partridge L (2002) Dietary restriction in long-lived dwarf flies. Science 296:319

    CAS  PubMed  Google Scholar 

  • Cohen AA (2004) Female post-reproductive lifespan: a general mammalian trait. Biol Rev Camb Philos Soc 79:733–750

    PubMed  Google Scholar 

  • Curran S, Ruvkun G (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3:e56

    PubMed  PubMed Central  Google Scholar 

  • Deshpande SA, Yamada R, Mak CM, Hunter B et al (2015) Acidic food pH increases palatability and consumption and extends Drosophila lifespan. J Nut 145:2789–2796

    CAS  Google Scholar 

  • Djawdan M, Chippindale AK, Rose MR, Bradley TJ (1998) Metabolic reserves and evolved stress resistance in Drosophila melanogaster. Physiol Zool 71:584–594

    CAS  PubMed  Google Scholar 

  • Driver CJ, Cosopodiotis G (1979) The effect of dietary fat on longevity of Drosophila melanogaster. Exp Gerontol 14:95–100

    CAS  PubMed  Google Scholar 

  • Driver C, Georgeou A (2003) Variable effects of vitamin E on Drosophila longevity. Biogerontol 4:91–95

    CAS  Google Scholar 

  • Driver CJ, Lamb MJ (1980) Metabolic changes in ageing Drosophila melanogaster. Exp Gerontol 15:167–175

    CAS  PubMed  Google Scholar 

  • Economos AC, Lints FA (1986) Developmental temperature and life-span in Drosophila melanogaster. I. Constant developmental temperature: evidence for physiological adaptation in a wide temperature range. Gerontol 32:18–27

    CAS  Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM et al (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290

    CAS  PubMed  Google Scholar 

  • Fabrizio P, Pletcher SD, Minois N, Vaupel JW et al (2004) Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Lett 557:136–142

    CAS  PubMed  Google Scholar 

  • Fanson BG, Yap S, Taylor PW (2012) Geometry of compensatory feeding and water consumption in Drosophila melanogaster. J Exp Biol 215:766–773

    PubMed  Google Scholar 

  • Fitzgerald KC, Vizthum D, Henry-Barron B, Schweitzer A et al (2018) Effect of intermittent vs. daily calorie restriction on changes in weight and patient-reported outcomes in people with multiple sclerosis. Mult Scler Relat Disord 23:33–39

    PubMed  PubMed Central  Google Scholar 

  • Flatt T (2011) Survival costs of reproduction in Drosophila. Exp Gerontol 46:369–375

    PubMed  Google Scholar 

  • Fontana L, Partridge L (2015) Promoting health and longevity through diet: from model organisms to humans. Cell 161:106–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana L, Meyer TE, Klein S, Holloszy JO (2004) Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. PNAS 101:6659–6663

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gáliková M, Klepsatel P (2018) Obesity and Aging in the Drosophila Model. Int J Mol Sci 19:1896

    PubMed Central  Google Scholar 

  • Gill S, Le HD, Melkani GC, Panda S (2015) Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science 347:1265–1269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Good TP, Tatar M (2001) Age-specific mortality and reproduction respond to adult dietary restriction in Drosophila melanogaster. J Insect Physiol 47:1467–1473

    CAS  PubMed  Google Scholar 

  • Grabowska W, Sikora E, Bielak-Zmijewska A (2017) Sirtuins, a promising target in slowing down the ageing process. Biogerontol 18:447–476

    CAS  Google Scholar 

  • Grandison RC, Piper MDW, Partridge L (2009a) Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462:1061–1064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grandison RC, Wong R, Bass TM, Partridge L et al (2009b) Effect of a standardised dietary restriction protocol on multiple laboratory strains of Drosophila melanogaster. PLoS ONE 4:e4067

    PubMed  PubMed Central  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation. J Gerontol 11:298–300

    CAS  PubMed  Google Scholar 

  • Harvie M, Wright C, Pegington M, McMullan D et al (2013) The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br J Nutr 110:1534–1547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Helfand SL, Rogina B (2003) From genes to aging in Drosophila. Adv Gen 49:67–109

    CAS  Google Scholar 

  • Höhn A, Jung T, Grimm S, Grune T (2010) Lipofuscin-bound iron is a major intracellular source of oxidants: role in senescent cells. Free Radic Biol Med 48:1100–1108

    PubMed  Google Scholar 

  • Hosono R, Nishimoto S, Kuno S (1989) Alterations of life span in the nematode Caenorhabditis elegans under monoxenic culture conditions. Exp Gerontol 24:251–264

    CAS  PubMed  Google Scholar 

  • Houthoofd K, Braeckman BP, Lenaerts I, Brys K et al (2002) Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp Gerontol 37:1371–1378

    PubMed  Google Scholar 

  • Huang CW, Wang HD, Bai H, Wu MS et al (2015) Tequila regulates insulin-like signaling and extends life span in Drosophila melanogaster. J Gerontol A 70:1461–1469

    CAS  Google Scholar 

  • Iliadi KG, Knight D, Boulianne GL (2012) Healthy aging—insights from Drosophila. Front Physiol 3:106

    PubMed  PubMed Central  Google Scholar 

  • Ja WW, Carvalho GB, Mak EM, de la Rosa NN et al (2007) Prandiology of Drosophila and the CAFE assay. PNAS 104:8253–8256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ja WW, Carvalho GB, Zid BM, Mak EM, Brummel T, Benzer S (2009) Water-and nutrient-dependent effects of dietary restriction on Drosophila lifespan. PNAS 106:18633–18637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson J, Lambert AJ, Portero-Otín M, Pamplona R et al (2010) Biomarkers of aging in Drosophila. Aging Cell 9:466–477

    CAS  PubMed  Google Scholar 

  • Jang T, Lee KP (2018) Comparing the impacts of macronutrients on life-history traits in larval and adult Drosophila melanogaster: the use of nutritional geometry and chemically defined diets. J Exp Biol 221:jeb181115

    PubMed  Google Scholar 

  • Jeon HJ, Kim YS, Park JS, Pyo JH et al (2015) Age-related change in γH2AX of Drosophila muscle: its significance as a marker for muscle damage and longevity. Biogerontol 16:503–516

    CAS  Google Scholar 

  • Jones OR, Scheuerlein A, Salguero-Gómez R, Camarda CG et al (2014) Diversity of ageing across the tree of life. Nature 505:169–173

    CAS  PubMed  Google Scholar 

  • Kabil H, Partridge L, Harshman LG (2007) Superoxide dismutase activities in long-lived Drosophila melanogaster females: chico1 genotypes and dietary dilution. Biogerontol 8:201–208

    CAS  Google Scholar 

  • Kaeberlein M, Powers RW III, Steffen KK, Westman EA et al (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:1193–1196

    CAS  PubMed  Google Scholar 

  • Kapahi P, Zid BM, Harper T, Koslover D et al (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Current Biol 14:885–890

    CAS  Google Scholar 

  • Kapahi P, Chen D, Rogers AN, Katewa SD et al (2010) With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 11:453–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kapahi P, Kaeberlein M, Hansen M (2017) Dietary restriction and lifespan: lessons from invertebrate models. Ageing Res Rev 39:3–14

    PubMed  Google Scholar 

  • Katewa SD, Demontis F, Kolipinski M, Hubbard A et al (2012) Intramyocellular fatty-acid metabolism plays a critical role in mediating responses to dietary restriction in Drosophila melanogaster. Cell Metab 16:97–103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katewa SD, Akagi K, Bose N, Rakshit K et al (2016) Peripheral circadian clocks mediate dietary restriction-dependent changes in lifespan and fat metabolism in Drosophila. Cell Metab 23:143–154

    CAS  PubMed  Google Scholar 

  • Klarsfeld A, Rouyer F (1998) Effects of circadian mutations and LD periodicity on the life span of Drosophila melanogaster. J Biol Rhythm 13:471–478. https://doi.org/10.1177/074873098129000309

    Article  CAS  Google Scholar 

  • Klepsatel P, Gáliková M, De Maio N, Ricci S et al (2013) Reproductive and post-reproductive life history of wild-caught Drosophila melanogaster under laboratory conditions. J Evol Biol 26:1508–1520

    CAS  PubMed  Google Scholar 

  • Klepsatel P, Procházka E, Gáliková M (2018) Crowding of Drosophila larvae affects lifespan and other life-history traits via reduced availability of dietary yeast. Exp Gerontol 110:298–308

    PubMed  Google Scholar 

  • König J, Ott C, Hugo M, Jung T et al (2017) Mitochondrial contribution to lipofuscin formation. Redox Biol 11:673–681

    PubMed  PubMed Central  Google Scholar 

  • Lee KP, Simpson SJ, Clissold FJ, Brooks R et al (2008) Lifespan and reproduction in Drosophila: new insights from nutritional geometry. PNAS 105:2498–2503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BC, Kaya A, Ma S, Kim G et al (2014) Methionine restriction extends lifespan of Drosophila melanogaster under conditions of low amino-acid status. Nature Commun 5:3592

    Google Scholar 

  • Lin YJ, Seroude L, Benzer S (1998) Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282:943–946

    CAS  PubMed  Google Scholar 

  • Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126–2128

    CAS  PubMed  Google Scholar 

  • Liu X, Liu M, Tang C, Xiang Z et al (2018) Overexpression of Nmnat improves the adaption of health span in aging Drosophila. Exp Gerontol 15:276–283

    Google Scholar 

  • Longo VD, Mattson MP (2014) Fasting: molecular mechanisms and clinical applications. Cell Metab 19:181–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo S, Shaw WM, Ashraf J, Murphy CT (2009) TGFbeta Sma/Mab signaling mutations uncouple reproductive aging from somatic aging. PLoS Genet 5:e1000789

    PubMed  PubMed Central  Google Scholar 

  • Ma S, Avanesov AS, Porter E, Lee BC et al (2018) Comparative transcriptomics across 14 Drosophila species reveals signatures of longevity. Aging Cell 19:e12740

    Google Scholar 

  • Magwere T, Chapman T, Partridge L (2004) Sex differences in the effect of dietary restriction on life span and mortality rates in female and male Drosophila melanogaster. J Gerontol A 59:3–9

    Google Scholar 

  • Mair W, Goymer P, Pletcher SD, Partridge L (2003) Demography of dietary restriction and death in Drosophila. Science 301:1731–1733

    CAS  PubMed  Google Scholar 

  • Mair W, Piper MDW, Partridge L (2005) Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol 3:e223

    PubMed  PubMed Central  Google Scholar 

  • Masoro EJ (2000) Caloric restriction and aging: an update. Exp Gerontol 35:299–305

    CAS  PubMed  Google Scholar 

  • Massie HR (1988) Chemicals. In: Lints FA, Soliman MH (eds) Drosophila as a model organism for ageing studies, 1st edn. Springer Science + Business Media, Berlin, pp 33–45

    Google Scholar 

  • Mattson MP, Longo VD, Harvie M (2017) Impact of intermittent fasting on health and disease processes. Ageing Res Rev 39:46–58

    PubMed  Google Scholar 

  • Miller RA, Austad SN (2006) Growth and Aging: Why do big dogs die young? In: Masoro EJ, Austad SN (eds) Handbook of the biology of aging, 6th edn. Elsevier, Amsterdam, pp 512–533

    Google Scholar 

  • Miller RA, Harper JM, Galecki A, Burke DT (2002) Big mice die young: early life body weight predicts longevity in genetically heterogeneous mice. Aging Cell 1:22–29

    CAS  PubMed  Google Scholar 

  • Miller RA, Buehner G, Chang Y, Harper JM et al (2005) Methionine deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-1 and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4:119–125

    CAS  PubMed  Google Scholar 

  • Min KJ, Flatt T, Kulaots I, Tatar M (2007) Counting calories in Drosophila diet restriction. Exp Gerontol 42:247–251

    PubMed  Google Scholar 

  • Min KJ, Yamamoto R, Buch S, Pankratz M, Tatar M (2008) Drosophila lifespan control by dietary restriction independent of insulin-like signaling. Aging Cell 7:199–206

    CAS  PubMed  Google Scholar 

  • Min Y, Sun T, Niu Z, Liu F (2016) Vitamin C and vitamin E supplementation alleviates oxidative stress induced by dexamethasone and improves fertility of breeder roosters. Anim Reprod Sci 171:1–6

    CAS  PubMed  Google Scholar 

  • Miquel J, Lundgren PR, Bensch KG, Atlan H (1976) Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster. Mech Ageing Dev 5:347–370

    CAS  PubMed  Google Scholar 

  • Mirisola MG, Taormina G, Fabrizio P, Wei M et al (2014) Serine- and threonine/valine-dependent activation of PDK and Tor orthologs converge on Sch9 to promote aging. PLoS Genet 10:e1004113

    PubMed  PubMed Central  Google Scholar 

  • Morley JE, Chahla E, Alkaade S (2010) Antiaging, longevity and calorie restriction. Curr Opin Clin Nut Metab Care 13:40–45

    Google Scholar 

  • Obata F, Miura M (2015) Enhancing S-adenosyl-methionine catabolism extends Drosophila lifespan. Nat Commun 6:8332

    CAS  PubMed  Google Scholar 

  • Obata F, Fons CO, Gould AP (2018) Early-life exposure to low dose oxidants can increase longevity via microbiome remodelling in Drosophila. Nat Commun 9:975

    PubMed  PubMed Central  Google Scholar 

  • Oberacker T, Bajorat J, Ziola S, Schroeder A et al (2018) Enhanced expression of thioredoxin-interacting-protein regulates oxidative DNA damage and aging. FEBS Lett. https://doi.org/10.1002/1873-3468.13156

    Article  PubMed  PubMed Central  Google Scholar 

  • Oldham S, Hafen E (2003) Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends Cell Biol 13:79–85

    CAS  PubMed  Google Scholar 

  • Orgel LE (1963) The maintenance of the accuracy of protein synthesis and its relevance to aging. PNAS 49:17–521

    Google Scholar 

  • Paaby AB, Blanket MJ, Hoffmann AA, Schmidt PS (2010) Identification of a candidate adaptive polymorphism for Drosophila life history by parallel independent clines on two continents. Mol Ecol 19:760–774

    CAS  PubMed  Google Scholar 

  • Paaby AB, Bergland AO, Behrman EL, Schmidt PS (2014) A highly pleiotrophic amino acid polymorphism in the Drosophila insulin receptor contributes to life-history adaptation. Evolution 68:3395–3409

    PubMed  PubMed Central  Google Scholar 

  • Panowski SH, Wolff S, Aguilaniu H, Durieux J et al (2007) PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447:550–555

    CAS  PubMed  Google Scholar 

  • Partridge L, Gems D (2002) Mechanisms of ageing: public or private? Nat Rev Genet 3:165–175

    CAS  PubMed  Google Scholar 

  • Partridge L, Pletcher SD, Mair W (2005) Dietary restriction, mortality trajectories, risk and damage. Mech Ageing Dev 126:35–41

    CAS  PubMed  Google Scholar 

  • Pearson KJ, Baur JA, Lewis KN, Peshkin L et al (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:57–68

    Google Scholar 

  • Piper MDW, Partridge L (2007) Dietary restriction in Drosophila: delayed aging or experimental artefact? PLoS Genet 3:e57

    PubMed  PubMed Central  Google Scholar 

  • Piper MDW, Partridge L (2018) Drosophila as a model for ageing. BBA 1864:2707–2717

    CAS  Google Scholar 

  • Piper MDW, Mair W, Partridge L (2005) Counting the calories: the role of specific nutrients in extension of life span by food restriction. J Gerontol 60:549–555

    Google Scholar 

  • Piper MDW, Wong R, Grandison RC, Bass TM et al (2010) Water-independent effects of dietary restriction in Drosophila. PNAS 107:E54–E56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piper MD, Blanc E, Leitão-Gonçalves R, Yang M et al (2014) A holidic medium for Drosophila melanogaster. Nat Methods 11:100–105

    CAS  PubMed  Google Scholar 

  • Pletcher SD, Macdonald SJ, Marguerie R, Certa U et al (2002) Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol 12:712–723

    CAS  PubMed  Google Scholar 

  • Powers RW III, Kaeberlein M, Caldwell SD, Kennedy BK et al (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20:174–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad NG, Joshi A (2003) What have two decades of laboratory life-history evolution studies on Drosophila melanogaster taught us? J Genet 82:45–76

    CAS  PubMed  Google Scholar 

  • Promislow DE, Haselkorn TS (2002) Age-specific metabolic rates and mortality rates in the genus Drosophila. Aging Cell 1:66–74

    CAS  PubMed  Google Scholar 

  • Regan JC, Khericha M, Dobson AJ, Bolukbasi E et al (2016) Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction. Elife 5:e10956

    PubMed  PubMed Central  Google Scholar 

  • Reichel W, Hollander J, Clark JH, Strehler BL (1968) Lipofuscin pigment accumulation as a function of age and distribution in rodent brain. J Gerontol 23:71

    CAS  PubMed  Google Scholar 

  • Ren C, Webster P, Finkel SE, Tower J (2007) Increased internal and external bacterial load during Drosophila aging without life-span trade-off. Cell Metab 6:144–152

    CAS  PubMed  Google Scholar 

  • Rera M, Clark RI, Walker DW (2012) Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. PNAS 109:21528–21533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richie JP Jr, Leutzinger Y, Parthasarathy S, Malloy V et al (1994) Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J 8:1302–1307

    CAS  PubMed  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. PNAS 101:15998–16003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogina B, Reenan RA, Nilsen SP, Helfand SL (2000) Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290:2137–2140

    CAS  PubMed  Google Scholar 

  • Rogina B, Helfand SL, Frankel S (2002) Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science 298:1745

    CAS  PubMed  Google Scholar 

  • Rollo CD (2002) Growth negatively impacts the life span of mammals. Evol Dev 4:55–61

    PubMed  Google Scholar 

  • Romey-Glüsing R, Li Y, Hoffmann J, von Frieling J et al (2018) Nutritional regimens with periodically recurring phases of dietary restriction extend lifespan in Drosophila. FASEB J 32:1993–2003

    PubMed  Google Scholar 

  • Roth GS, Lane MA, Ingram DK, Mattison JA et al (2002) Biomarkers of caloric restriction may predict longevity in humans. Science 297:811

    CAS  PubMed  Google Scholar 

  • Rybina OY, Sarantseva SV, Veselkina ER, Bolschakova OI (2017) Tissue-specific transcription of the neuronal gene Lim3 affects Drosophila melanogaster lifespan and locomotion. Biogerontol 18:739–757

    CAS  Google Scholar 

  • Sannino DR, Dobson AJ, Edwards K, Angert ER et al (2018) The Drosophila melanogaster gut microbiota provisions thiamine to its host. MBio 9:e00155-18. https://doi.org/10.1128/mBio.00155-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen J, Zhu X, Gu Y, Zhang C et al (2018) Toxic effect of visible light on Drosophila lifespan depending upon diet protein content. J Gerontol A. https://doi.org/10.1093/gerona/gly042

    Article  Google Scholar 

  • Simm A, Nass N, Bartling B, Hofmann B et al (2008) Potential biomarkers of ageing. J Biol Chem 389:257–265

    CAS  Google Scholar 

  • Skorupa DA, Dervisefendic A, Zwiener J, Pletcher SD (2008) Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 7:478–490

    CAS  PubMed  Google Scholar 

  • Slack C, Foley A, Partridge L (2012) Activation of AMPK by the putative dietary restriction mimetic metformin is insufficient to extend lifespan in Drosophila. PLoS ONE 7:e47699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sohal RS, Ku HH, Agarwal S, Forster MJ et al (1994) Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 74:121–133

    CAS  PubMed  Google Scholar 

  • Soliman MH, van Herrewege J (1988) Nutrition. In: Lints FA, Soliman MH (eds) Drosophila as a Model Organism for Ageing Studies, 1st edn. Springer Science+Business Media, Berlin, pp 46–58

    Google Scholar 

  • Søndergaard L, Mauchline D, Egetoft P, White N et al (1995) Nutritional response in a Drosophila yolk protein gene promoter. Mol Gen Genet 248:25–32

    PubMed  Google Scholar 

  • Spencer CC, Howell CE, Wright AR, Promislow DE (2003) Testing an “aging gene” in long-lived Drosophila strains: increased longevity depends on sex and genetic background. Aging Cell 2:123–130

    CAS  PubMed  Google Scholar 

  • Stefana MI, Driscoll PC, Obata F, Pengelly AR et al (2017) Developmental diet regulates Drosophila lifespan via lipid autotoxins. Nat Commun 8:1384

    PubMed  PubMed Central  Google Scholar 

  • Sun J, Tower J (1999) FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 19:216–228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tatar M, Kopelman A, Epstein D, Tu MP et al (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–110

    CAS  PubMed  Google Scholar 

  • Tu MP, Tatar M (2003) Juvenile diet restriction and the aging and reproduction of adult Drosophila melanogaster. Aging Cell 2:327–333

    CAS  PubMed  Google Scholar 

  • Tully T, Lambert A (2011) The evolution of postreproductive life span as an insurance against indeterminacy. Evolution 65:3013–3020

    PubMed  Google Scholar 

  • Ulgherait M, Chen A, Oliva MK, Kim HX, Canman JC, Ja WW, Shirasu-Hiza M (2016) Dietary restriction extends the lifespan of circadian mutants tim and per. Cell Metab 24:763–764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Herrewege J (1974) Nutritional requirements of adult Drosophila melanogaster: the influence of the casein concentration on the duration of life. Exp Gerontol 9:191–198

    PubMed  Google Scholar 

  • Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    CAS  PubMed  Google Scholar 

  • Wang C, Weindruch R, Fernández JR, Coffey CS et al (2004) Caloric restriction and body weight independently affect longevity in Wistar rats. IJO 28:357–362

    CAS  Google Scholar 

  • Wang MC, Bohmann D, Jasper H (2005) JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121:115–125

    CAS  PubMed  Google Scholar 

  • Wang PY, Neretti N, Whitaker R, Hosier S et al (2009) Long-lived Indy and calorie restriction interact to extend life span. PNAS 106:9262–9267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei M, Brandhorst S, Shelehchi M, Mirzaei H et al (2017) Fasting mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci Transl Med 9:8700

    Google Scholar 

  • Wigby S, Chapman T (2005) Sex peptide causes mating costs in female Drosophila melanogaster. Curr Biol 15:316–321

    CAS  PubMed  Google Scholar 

  • Wu Z, Song L, Liu SQ, Huang D (2013) Independent and additive effects of glutamic acid and methionine on yeast longevity. PLoS ONE 8:e79319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia B, de Belle S (2016) Transgenerational programming of longevity and reproduction by post-eclosion dietary manipulation in Drosophila. Aging (Albany, NY) 8:1115–1129

    Google Scholar 

  • Xia B, Gerstin E, Schones DE, Huang W, de Belle JS (2016) Transgenerational programming of longevity through E(z)-mediated histone H3K27 trimethylation in Drosophila. Aging (Albany, NY) 8:2988–3002

    CAS  Google Scholar 

  • Yadav P, Sharma VK (2014) Correlated changes in life history traits in response to selection for faster pre-adult development in the fruit fly Drosophila melanogaster. J Exp Biol 217:580–589

    PubMed  Google Scholar 

  • Ye J, Cui X, Loraine A, Bynum K et al (2007) Methods for nutrigenomics and longevity studies in Drosophila: effects of diets high in sucrose, palmitic acid, soy, or beef. Methods Mol Biol 371:111–141

    CAS  PubMed  Google Scholar 

  • Yu BP, Masoro EJ, McMahan CA (1985) Nutritional influences on aging of fischer 344 rats: I. Physical, metabolic, and longevity characteristics. J Gerontol 40:657–670

    CAS  PubMed  Google Scholar 

  • Yuan Y, DiCiaccio B, Li Y, Elshikha AS et al (2018) Anti-inflammaging effects of human alpha-1 antitrypsin. Aging Cell 17:e12694

    Google Scholar 

  • Zhang S, Ratliff EP, Molina B, El-Mecharrafie N et al (2018) Aging and intermittent fasting impact on transcriptional regulation and physiological responses of adult Drosophila neuronal and muscle tissues. Int J Mol Sci 19:1140

    PubMed Central  Google Scholar 

  • Zhao Y, Sun H, Lu J, Li X et al (2005) Lifespan extension and elevated hsp gene expression in Drosophila caused by histone deacetylase inhibitors. J Exp Biol 208:697–705

    CAS  PubMed  Google Scholar 

  • Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA, Benzer S, Kapahi P (2009) 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139:149–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman JA, Malloy V, Krajcik R, Orentreich N (2003) Nutritional control of aging. Exp Gerontol 38:47–52

    CAS  PubMed  Google Scholar 

  • Zou S, Sinclair J, Wilson MA, Carey JR et al (2007) Comparative approaches to facilitate the discovery of prolongevity interventions: effects of tocopherols on lifespan of three invertebrate species. Mech Ageing Dev 128:222–226

    CAS  PubMed  Google Scholar 

  • Zwaan BJ, Bijlsma R, Hoekstra RF (1991) On the developmental theory of ageing. I. Starvation resistance and longevity in Drosophila melanogaster in relation to pre-adult breeding conditions. Heredity 66:29–39

    PubMed  Google Scholar 

  • Zwaan BJ, Bijlsma R, Hoekstra RF (1992) On the developmental theory of ageing. II. The effect of developmental temperature on longevity in relation to adult body size in D. melanogaster. Heredity 68:123–130

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Science and Engineering Research Board (File no- YSS/2015/000354), Department of Science and Technology- Government of India, India. PY also acknowledges SASTRA Deemed to be University, Thanjavur (TN), India for Prof. TRR Research Fund to carry out initial studies. SK acknowledges the Department of Science and Technology- Government of India, for the INSPIRE fellowship (IF170750). We also thank two anonymous reviewers and Dr. Shahnaz Rahman Lone for their careful reading the final version of the manuscript and suggesting improvements in the same.

Author information

Authors and Affiliations

Authors

Contributions

SK and PY have contributed equally in drafting the article, revising and approving the final version of the manuscript.

Corresponding author

Correspondence to Pankaj Yadav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krittika, S., Yadav, P. An overview of two decades of diet restriction studies using Drosophila. Biogerontology 20, 723–740 (2019). https://doi.org/10.1007/s10522-019-09827-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-019-09827-0

Keywords

Navigation