Nicotinamide adenine dinucleotide emerges as a therapeutic target in aging and ischemic conditions

  • Leila Hosseini
  • Manouchehr S. Vafaee
  • Javad Mahmoudi
  • Reza BadalzadehEmail author
Review Article


Nicotinamide adenine dinucleotide (NAD+) has been described as central coenzyme of redox reactions and is a key regulator of stress resistance and longevity. Aging is a multifactorial and irreversible process that is characterized by a gradual diminution in physiological functions in an organism over time, leading to development of age-associated pathologies and eventually increasing the probability of death. Ischemia is the lack of nutritive blood flow that causes damage and mortality that mostly occurs in various organs during aging. During the process of aging and related ischemic conditions, NAD+ levels decline and lead to nuclear and mitochondrial dysfunctions, resulting in age-related pathologies. The majority of studies have shown that restoring of NAD+ using supplementation with intermediates such as nicotinamide mononucleotide and nicotinamide riboside can be a valuable strategy for recovery of ischemic injury and age-associated defects. This review summarizes the molecular mechanisms responsible for the reduction in NAD+ levels during ischemic disorders and aging, as well as a particular focus is given to the recent progress in the understanding of NAD+ precursor’s effects on aging and ischemia.


Aging Ischemic disorders Nicotinamide adenine dinucleotide Nicotinamide mononucleotide Mitochondria Longevity 



This work has been supported by Aging Research Institute, Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz-Iran.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. Aksoy P, White TA, Thompson M, Chini EN (2006) Regulation of intracellular levels of NAD: a novel role for CD38. Biochem Biophys Res Commun 345:1386–1392PubMedCrossRefGoogle Scholar
  2. Alano CC, Ying W, Swanson RA (2004) Poly (ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD + depletion and mitochondrial permeability transition. J Biol Chem 279:18895–18902PubMedCrossRefGoogle Scholar
  3. Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, Swanson RA (2010) NAD + Depletion Is Necessary and Sufficient forPoly (ADP-Ribose) Polymerase-1-Mediated Neuronal Death. J Neurosci 30:2967–2978PubMedPubMedCentralCrossRefGoogle Scholar
  4. Badalzadeh R, Azimi A, Alihemmati A, Yousefi B (2017) Chronic type-I diabetes could not impede the anti-inflammatory and anti-apoptotic effects of combined postconditioning with ischemia and cyclosporine A in myocardial reperfusion injury. J Physiol Biochem 73:111–120PubMedCrossRefGoogle Scholar
  5. Baldelli S, Aquilano K, Ciriolo M (2014) PGC-1α buffers ROS-mediated removal of mitochondria during myogenesis. Cell Death Dis 5:e1515PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baxter P, Chen Y, Xu Y, Swanson RA (2014) Mitochondrial dysfunction induced by nuclear poly (ADP-ribose) polymerase-1: a treatable cause of cell death in stroke. Trans Stroke Res 5:136–144CrossRefGoogle Scholar
  7. Bayrami G et al (2018) Combination of vildagliptin and ischemic postconditioning in diabetic hearts as a working strategy to reduce myocardial reperfusion injury by restoring mitochondrial function and autophagic activity. Adv Pharm Bull 8:319PubMedPubMedCentralCrossRefGoogle Scholar
  8. Beattie MS (2004) Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med 10:580–583PubMedCrossRefGoogle Scholar
  9. Becatti M, Taddei N, Cecchi C, Nassi N, Nassi PA, Fiorillo C (2012) SIRT1 modulates MAPK pathways in ischemic–reperfused cardiomyocytes. Cell Mol Life Sci 69:2245–2260PubMedCrossRefGoogle Scholar
  10. Bi J, Li H, Ye SQ, Ding S (2012) Pre-B-cell colony-enhancing factor exerts a neuronal protection through its enzymatic activity and the reduction of mitochondrial dysfunction in in vitro ischemic models. J Neurochem 120:334–346PubMedCrossRefGoogle Scholar
  11. Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Grant R (2011) Changes in kynurenine pathway metabolism in the brain, liver and kidney of aged female Wistar rats. FEBS J 278:4425–4434PubMedCrossRefGoogle Scholar
  12. Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 160:1115–1127PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brooks C, Wei Q, Cho S-G, Dong Z (2009) Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Investig 119:1275–1285PubMedCrossRefGoogle Scholar
  14. Brown KD et al (2014) Activation of SIRT3 by the NAD + precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metabol 20:1059–1068CrossRefGoogle Scholar
  15. Bueno M et al. (2018) Cyb5R3 an External Mitochondrial NADH-Dependent Reductase Confers Protection Against Lung Fibrosis. In: B107. MECHANISTIC ADVANCES IN PULMONARY FIBROSIS. American Thoracic Society, pp A4351-A4351Google Scholar
  16. Camacho-Pereira J et al (2016) CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab 23:1127–1139PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cantó C et al (2012) The NAD + precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 15:838–847PubMedPubMedCentralCrossRefGoogle Scholar
  18. Carelli V, Maresca A, Caporali L, Trifunov S, Zanna C, Rugolo M (2015) Mitochondria: biogenesis and mitophagy balance in segregation and clonal expansion of mitochondrial DNA mutations. Int J Biochem Cell Biol 63:21–24PubMedCrossRefGoogle Scholar
  19. Chen S-D, Yang D-I, Lin T-K, Shaw F-Z, Liou C-W, Chuang Y-C (2011) Roles of oxidative stress, apoptosis, PGC-1α and mitochondrial biogenesis in cerebral ischemia. Int J Mol Sci 12:7199–7215PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chini EN (2009) CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions. Curr Pharm Des 15:57–63PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chini CC, Guerrico AMG, Nin V, Camacho-Pereira J, Escande C, Barbosa MT, Chini EN (2014) Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors. Clin Cancer Res 20:120–130PubMedCrossRefGoogle Scholar
  22. Choe CU et al (2011) CD38 exacerbates focal cytokine production, postischemic inflammation and brain injury after focal cerebral ischemia. PLoS ONE 6:e19046PubMedPubMedCentralCrossRefGoogle Scholar
  23. Claire C et al (2003) CD38-dependent ADP-ribosyl cyclase activity in developing and adult mouse brain. Biochem J 370:175–183CrossRefGoogle Scholar
  24. D’Annunzio V, Perez V, Boveris A, Gelpi RJ, Poderoso JJ (2016) Role of thioredoxin-1 in ischemic preconditioning, postconditioning and aged ischemic hearts. Pharmacol Res 109:24–31PubMedCrossRefGoogle Scholar
  25. Dare AJ, Bolton EA, Pettigrew GJ, Bradley JA, Saeb-Parsy K, Murphy MP (2015) Protection against renal ischemia–reperfusion injury in vivo by the mitochondria targeted antioxidant. MitoQ Redox Biol 5:163–168PubMedCrossRefGoogle Scholar
  26. de Picciotto NE et al (2016) Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 15:522–530PubMedPubMedCentralCrossRefGoogle Scholar
  27. Di Lisa F, Menabò R, Canton M, Barile M, Bernardi P (2000) Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD + and is a causative event in the death of myocytes in post-ischemic reperfusion of the heart. J Biol Chem 276(4):2571–2575PubMedCrossRefGoogle Scholar
  28. Egan DF et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461PubMedCrossRefGoogle Scholar
  29. Elliott G, Rechsteiner M (1975) Pyridine nucleotide metabolism in mitotic cells. J Cell Physiol 86:641–651PubMedCrossRefGoogle Scholar
  30. Eltzschig HK, Eckle T (2011) Ischemia and reperfusion—from mechanism to translation. Nat Med 17:1391PubMedCrossRefGoogle Scholar
  31. Esposito E et al (2012) The NAMPT inhibitor FK866 reverts the damage in spinal cord injury. J Neuroinflamm 9:66Google Scholar
  32. Fang EF et al (2014) Defective mitophagy in XPA via PARP-1 hyperactivation and NAD +/SIRT1 reduction. Cell 157:882–896PubMedPubMedCentralCrossRefGoogle Scholar
  33. Frederick DW et al (2016) Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle. Cell Metab 24:269–282PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gems D, Partridge L (2013) Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol 75:621–644PubMedCrossRefGoogle Scholar
  35. Gomes AP et al (2013) Declining NAD + induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155:1624–1638PubMedPubMedCentralCrossRefGoogle Scholar
  36. Guan X-H et al (2016) CD38 deficiency protects the heart from ischemia/reperfusion injury through activating SIRT1/FOXOs-mediated antioxidative stress pathway. Oxid Med cell Longev. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Guan Y, Wang S-R, Huang X-Z, Xie Q-h XuY-Y, Shang D, Hao C-M (2017) Nicotinamide Mononucleotide, an NAD + Precursor, Rescues Age-Associated Susceptibility to AKI in a Sirtuin 1–Dependent Manner. J Am Soc Nephrol 28(8):2337–2352PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hafner AV, Dai J, Gomes AP, Xiao C-Y, Palmeira CM, Rosenzweig A, Sinclair DA (2010) Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY) 2:914CrossRefGoogle Scholar
  39. Han J, Shi S, Min L, Wu T, Xia W, Ying W (2011) NAD + treatment induces delayed autophagy in Neuro2a cells partially by increasing oxidative stress. Neurochem Res 36:2270PubMedCrossRefGoogle Scholar
  40. Harden A, Young WJ (1906) The alcoholic ferment of yeast-juice Part II.—The coferment of yeast-juice. Proc R Soc Lond B 78:369–375CrossRefGoogle Scholar
  41. Harman D (1956) A theory based on free radical and radiation chemistry. J. ior Handbook of Essential Fatty Acid Biology: Biochemistry, PhysiologyGoogle Scholar
  42. Helley MP, Pinnell J, Sportelli C, Tieu K (2017) Mitochondria: a common target for genetic mutations and environmental toxicants in parkinson’s disease. Front Genet 8:177PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hernández-Jiménez M et al (2013) Silent information regulator 1 protects the brain against cerebral ischemic damage. Stroke 44:2333–2337PubMedCrossRefGoogle Scholar
  44. Houtkooper RH, Auwerx J (2012) Exploring the therapeutic space around NAD+. Rockefeller University Press, New YorkCrossRefGoogle Scholar
  45. Hsu C-P, Oka S, Shao D, Hariharan N, Sadoshima J (2009) Nicotinamide phosphoribosyltransferase regulates cell survival through NAD + synthesis in cardiac myocytes. Circ Res 105:481–491PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hwang ES, Yoon G, Kang HT (2009) A comparative analysis of the cell biology of senescence and aging. Cell Mol Life Sci 66:2503–2524PubMedCrossRefGoogle Scholar
  47. Imai SI, Guarente L (2014) NAD + and sirtuins in aging and disease. Trends Cell Biol 24:464–471PubMedPubMedCentralCrossRefGoogle Scholar
  48. Imai SI, Yoshino J (2013) The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing Diabetes. Obesity Metab 15:26–33CrossRefGoogle Scholar
  49. Jang SY, Kang HT, Hwang ES (2012) Nicotinamide-induced mitophagy: an event mediated by high NAD +/NADH ratio and SIRT1 activation. J Biol Chem 287(23):19304PubMedPubMedCentralCrossRefGoogle Scholar
  50. Khalili H, Talasaz AH, Jenab Y, Salarifar M (2012) Clinical characteristics and risk assessment of ST-segment elevation myocardial infarction patients of an Iranian referral center. J Cardiovasc Med 13:708–715CrossRefGoogle Scholar
  51. Kitani T, Okuno S, Fujisawa H (2003) Growth phase-dependent changes in the subcellular localization of pre-B-cell colony-enhancing factor 1. FEBS Lett 544:74–78PubMedCrossRefGoogle Scholar
  52. Kuo C-Y, Chiu Y-C, Lee AY-L, Hwang T-L (2015) Mitochondrial Lon protease controls ROS-dependent apoptosis in cardiomyocyte under hypoxia. Mitochondrion 23:7–16PubMedCrossRefGoogle Scholar
  53. Lee JS et al (2012) Beta-lapachone, a modulator of NAD metabolism, prevents health declines in aged mice. PLoS ONE 7:e47122PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lee CF et al (2016) Normalization of NAD + redox balance as a therapy for heart failure. Circulation 134(12):883PubMedPubMedCentralCrossRefGoogle Scholar
  55. Levine ME et al (2014) Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab 19:407–417PubMedPubMedCentralCrossRefGoogle Scholar
  56. Li J et al (2012) Reperfusion promotes mitochondrial dysfunction following focal cerebral ischemia in rats. PLoS ONE 7:e46498PubMedPubMedCentralCrossRefGoogle Scholar
  57. Liesa M, Palacín M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89:799–845PubMedCrossRefGoogle Scholar
  58. Lim SY, Davidson SM, Paramanathan AJ, Smith CC, Yellon DM, Hausenloy DJ (2008) The novel adipocytokine visfatin exerts direct cardioprotective effects. J Cell Mol Med 12:1395–1403PubMedPubMedCentralCrossRefGoogle Scholar
  59. Liu JP (2014) Molecular mechanisms of ageing and related diseases. Clin Exp Pharmacol Physiol 41:445–458PubMedCrossRefGoogle Scholar
  60. Liu D, Pitta M, Mattson MP (2008) Preventing NAD + depletion protects neurons against excitotoxicity: bioenergetic effects of mild mitochondrial uncoupling and caloric restriction. Ann N Y Acad Sci 1147:275–282PubMedPubMedCentralCrossRefGoogle Scholar
  61. Liu L, Wang P, Liu X, He D, Liang C, Yu Y (2014) Exogenous NAD + supplementation protects H9c2 cardiac myoblasts against hypoxia/reoxygenation injury via Sirt1-p53 pathway. Fundam Clin Pharmacol 28:180–189PubMedCrossRefGoogle Scholar
  62. Long AN, Owens K, Schlappal AE, Kristian T, Fishman PS, Schuh RA (2015) Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurol 15:19PubMedPubMedCentralCrossRefGoogle Scholar
  63. Long A, Park JH, Klimova N, Fowler C, Loane DJ, Kristian T (2017) CD38 knockout mice show significant protection against ischemic brain damage despite high level poly-ADP-ribosylation. Neurochem Res 42:283–293PubMedCrossRefGoogle Scholar
  64. López-Lluch G, Irusta PM, Navas P, de Cabo R (2008) Mitochondrial biogenesis and healthy aging. Exp Gerontol 43:813–819PubMedPubMedCentralCrossRefGoogle Scholar
  65. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lu L-F et al (2009) Elevated visfatin/pre-B-cell colony-enhancing factor plasma concentration in ischemic stroke. J Stroke Cerebrovasc Dis 18:354–359PubMedCrossRefGoogle Scholar
  67. Martin LJ (2010) Mitochondrial and cell death mechanisms in neurodegenerative diseases. Pharmaceuticals 3:839–915PubMedPubMedCentralCrossRefGoogle Scholar
  68. Martorell‐Riera A et al (2014) Mfn2 downregulation in excitotoxicity causes mitochondrial dysfunction and delayed neuronal death. EMBO J 33:2388–2407PubMedPubMedCentralCrossRefGoogle Scholar
  69. Matsuda A et al (2014) FK866, a visfatin inhibitor, protects against acute lung injury after intestinal ischemia–reperfusion in mice via NF-κB pathway. Ann Surg 259:1007–1017PubMedCrossRefGoogle Scholar
  70. Matsuura S, Egi Y, Yuki S, Horikawa T, Satoh H, Akira T (2011) MP-124, a novel poly (ADP-ribose) polymerase-1 (PARP-1) inhibitor, ameliorates ischemic brain damage in a non-human primate model. Brain Res 1410:122–131PubMedCrossRefGoogle Scholar
  71. Mendelsohn AR, Larrick JW (2014) Partial reversal of skeletal muscle aging by restoration of normal NAD + levels. Rejuvenation Res 17:62–69PubMedCrossRefGoogle Scholar
  72. Mills KF et al (2016) Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab 24:795–806PubMedPubMedCentralCrossRefGoogle Scholar
  73. Miquel J, Economos A, Fleming J, Johnson J Jr (1980) Mitochondrial role in cell aging. Exp Gerontol 15:575–591PubMedCrossRefGoogle Scholar
  74. Mokudai T, Ayoub IA, Sakakibara Y, Lee E-J, Ogilvy CS, Maynard KI (2000) Delayed treatment with nicotinamide (vitamin B3) improves neurological outcome and reduces infarct volume after transient focal cerebral ischemia in Wistar rats. Stroke 31:1679–1685PubMedCrossRefGoogle Scholar
  75. Moraga A et al (2015) Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia. J Neuroinflamm 12:87CrossRefGoogle Scholar
  76. Mouchiroud L et al (2013) The NAD +/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154:430–441PubMedPubMedCentralCrossRefGoogle Scholar
  77. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609PubMedPubMedCentralCrossRefGoogle Scholar
  78. Nakagawa T, Guarente L (2014) SnapShot: sirtuins, NAD, and aging. Cell Metab 20:192PubMedCrossRefGoogle Scholar
  79. Nakamura N, Kimura Y, Tokuda M, Honda S, Hirose S (2006) MARCH-V is a novel mitofusin 2-and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep 7:1019–1022PubMedPubMedCentralCrossRefGoogle Scholar
  80. Palikaras K, Tavernarakis N (2014) Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp Gerontol 56:182–188PubMedCrossRefGoogle Scholar
  81. Palikaras K, Lionaki E, Tavernarakis N (2015) Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521:525PubMedCrossRefGoogle Scholar
  82. Park JH, Long A, Owens K, Kristian T (2016) Nicotinamide mononucleotide inhibits post-ischemic NAD + degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiol Dis 95:102–110PubMedPubMedCentralCrossRefGoogle Scholar
  83. Peng C et al (2015) Mitofusin 2 ameliorates hypoxia-induced apoptosis via mitochondrial function and signaling pathways. Int J Biochem Cell Biol 69:29–40PubMedCrossRefGoogle Scholar
  84. Pillai VB, Sundaresan NR, Kim G, Samant S, Moreno-Vinasco L, Garcia JG, Gupta MP (2012) Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and adverse ventricular remodeling. Am J Physiol-Heart Circ Physiol 304:H415–H426PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ping L, Yin Z, Li Y (2016) GW27-e0632 NR reduced myocardial ischemia-reperfusion injury by improving mitochondrial biogenesis and reducing excessive autophagy via Sirt3-PGC-1α/P53 pathway. J Am Coll Cardiol 68:C24–C25CrossRefGoogle Scholar
  86. Polzonetti V, Carpi FM, Micozzi D, Pucciarelli S, Vincenzetti S, Napolioni V (2012) Population variability in CD38 activity: correlation with age and significant effect of TNF-α-308G > A and CD38 184C > G SNPs. Mol Genet Metab 105:502–507PubMedCrossRefGoogle Scholar
  87. Radogna F, Albertini M, De Nicola M, Diederich M, Bejarano I, Ghibelli L (2015) Melatonin promotes Bax sequestration to mitochondria reducing cell susceptibility to apoptosis via the lipoxygenase metabolite 5-hydroxyeicosatetraenoic acid. Mitochondrion 21:113–121PubMedCrossRefGoogle Scholar
  88. Rechsteiner M, Hillyard D, Olivera BM (1976) Turnover of nicotinamide adenine dinucleotide in cultures of human cells. J Cell Physiol 88:207–217PubMedCrossRefGoogle Scholar
  89. Revollo JR et al (2007) Nampt/PBEF/visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme. Cell Metab 6:363–375PubMedPubMedCentralCrossRefGoogle Scholar
  90. Rex A, Spychalla M, Fink H (2004) Treatment with reduced nicotinamide adenine dinucleotide (NADH) improves water maze performance in old Wistar rats. Behav Brain Res 154:149–153PubMedCrossRefGoogle Scholar
  91. Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P (2008) Metabolic adaptations through the PGC-1α and SIRT1 pathways. FEBS Lett 582:46–53PubMedCrossRefGoogle Scholar
  92. Romero JR (2007) Prevention of ischemic stroke: overview of traditional risk factors. Curr Drug Targets 8:794–801PubMedCrossRefGoogle Scholar
  93. Saeid F, Aniseh J, Reza B, Manouchehr VS (2018) Signaling mediators modulated by cardioprotective interventions in healthy and diabetic myocardium with ischaemia–reperfusion injury. Eur J Prev Cardiol 25(14):1463PubMedCrossRefGoogle Scholar
  94. Salehpour F et al (2019) Photobiomodulation and Coenzyme Q10 Treatments Attenuate Cognitive Impairment Associated with Model of Transient Global Brain Ischemia in Artificially Aged Mice. Front Cell Neurosci 13:74CrossRefGoogle Scholar
  95. Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I (1994) Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol Cell Biol 14:1431–1437PubMedPubMedCentralCrossRefGoogle Scholar
  96. Scheibye-Knudsen M et al (2014) A high-fat diet and NAD + activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab 20:840–855PubMedPubMedCentralCrossRefGoogle Scholar
  97. Seo AY, Joseph A-M, Dutta D, Hwang JC, Aris JP, Leeuwenburgh C (2010) New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123:2533–2542PubMedPubMedCentralCrossRefGoogle Scholar
  98. Shanmughapriya S et al (2015) SPG7 is an essential and conserved component of the mitochondrial permeability transition pore. Mol Cell 60:47–62PubMedPubMedCentralCrossRefGoogle Scholar
  99. Smith CM, Chen Y, Sullivan ML, Kochanek PM, Clark RS (2011) Autophagy in acute brain injury: feast, famine, or folly? Neurobiol Dis 43:52–59PubMedCrossRefGoogle Scholar
  100. Song HK et al (2008) Visfatin: a new player in mesangial cell physiology and diabetic nephropathy. Am J Physiol-Renal Physiol 295:F1485–F1494PubMedCrossRefGoogle Scholar
  101. Song L et al (2014) Inhibition of 12/15 lipoxygenase by baicalein reduces myocardial ischemia/reperfusion injury via modulation of multiple signaling pathways. Apoptosis 19:567–580PubMedCrossRefGoogle Scholar
  102. Stein LR, Imai SI (2014) Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO J 33:1321–1340PubMedPubMedCentralGoogle Scholar
  103. Strosznajder RP, Gadamski R, Czapski GA, Jesko H, Strosznajder JB (2003) Poly (ADP-ribose) polymerase during reperfusion after transient forebrain ischemia. J Mol Neurosci 20:61–71PubMedCrossRefGoogle Scholar
  104. Su C-F, Liu DD, Kao SJ, Chen HI (2007) Nicotinamide abrogates acute lung injury caused by ischemia-reperfusion. Eur Respir J 30(2):199PubMedCrossRefGoogle Scholar
  105. Sukhodub A, Du Q, Jovanović S, Jovanović A (2010) Nicotinamide-rich diet protects the heart against ischaemia–reperfusion in mice: a crucial role for cardiac SUR2A. Pharmacol Res 61:564–570PubMedPubMedCentralCrossRefGoogle Scholar
  106. Sun Z, Lei H, Zhang Z (2013) Pre-B cell colony enhancing factor (PBEF), a cytokine with multiple physiological functions. Cytokine Growth Factor Rev 24:433–442PubMedPubMedCentralCrossRefGoogle Scholar
  107. Tong D-L et al (2012) Nicotinamide pretreatment protects cardiomyocytes against hypoxia-induced cell death by improving mitochondrial stress. Pharmacology 90:11–18PubMedCrossRefGoogle Scholar
  108. Ungvari Z, Labinskyy N, Gupte S, Chander PN, Edwards JG, Csiszar A (2008) Dysregulation of mitochondrial biogenesis in vascular endothelial and smooth muscle cells of aged rats. Am J Physiol-Heart Circ Physiol 294:H2121–H2128PubMedCrossRefGoogle Scholar
  109. Van Gool F et al (2009) Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner. Nat Med 15:206PubMedPubMedCentralCrossRefGoogle Scholar
  110. Veith S, Mangerich A (2015) RecQ helicases and PARP1 team up in maintaining genome integrity. Ageing Res Rev 23:12–28PubMedCrossRefGoogle Scholar
  111. von Euler H (1999) Fermentation of sugars and fermentative enzymes, In: Nobelstiftelsen (eds) Nobel Lectures in Chemistry, New Jersey: World Scientific, pp. 144-155Google Scholar
  112. Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12:685PubMedPubMedCentralCrossRefGoogle Scholar
  113. Wang P et al (2011) Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate–activated kinase pathway. Ann Neurol 69:360–374PubMedCrossRefGoogle Scholar
  114. Wang P, Guan Y-F, Du H, Zhai Q-W, Su D-F, Miao C-Y (2012) Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy 8:77–87PubMedCrossRefGoogle Scholar
  115. Wang C, Zhang Y, Ding J, Zhao Z, Qian C, Luan Y, Teng G-J (2017) Nicotinamide administration improves remyelination after stroke. Neural plast 2017:12Google Scholar
  116. Wei CC et al (2017) NAD replenishment with nicotinamide mononucleotide protects blood–brain barrier integrity and attenuates delayed tissue plasminogen activator-induced haemorrhagic transformation after cerebral ischaemia. Br J Pharmacol 174:3823–3836PubMedPubMedCentralCrossRefGoogle Scholar
  117. Weng XF, Li ST, Song Q, Zhu Q, D-d Song, Qin ZH, Xie Y (2018) Protective effect of nicotinamide adenine dinucleotide phosphate on renal ischemia-reperfusion injury. Kidney Blood Press Res 43:651–663PubMedCrossRefGoogle Scholar
  118. Williams PA et al (2017) Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science 355:756–760PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wu G-C et al (2017) Targeting of nicotinamide phosphoribosyltransferase enzymatic activity ameliorates lung damage induced by ischemia/reperfusion in rats. Respir Res 18:71PubMedPubMedCentralCrossRefGoogle Scholar
  120. Xiao J, Sun B, Li M, Wu Y, Sun XB (2013) A novel adipocytokine visfatin protects against H2O2-induced myocardial apoptosis: a missing link between obesity and cardiovascular disease. J Cell Physiol 228:495–501PubMedCrossRefGoogle Scholar
  121. Xie L, Wang Z, Li C, Yang K, Liang Y (2017a) Protective effect of nicotinamide adenine dinucleotide (NAD +) against spinal cord ischemia–reperfusion injury via reducing oxidative stress-induced neuronal apoptosis. J Clin Neurosci 36:114–119PubMedCrossRefGoogle Scholar
  122. Xie L, Yu S, Wang Z, Yang K, Liu Z, Li C, Liang Y (2017b) Nicotinamide adenine dinucleotide protects against spinal cord ischemia reperfusion injury-induced apoptosis by blocking autophagy. Oxid Med Cell Longev. CrossRefPubMedPubMedCentralGoogle Scholar
  123. Yamamoto T, Byun J, Zhai P, Ikeda Y, Oka S, Sadoshima J (2014) Nicotinamide mononucleotide, an intermediate of NAD + synthesis, protects the heart from ischemia and reperfusion. PLoS ONE 9:e98972PubMedPubMedCentralCrossRefGoogle Scholar
  124. Yang H et al (2007) Nutrient-sensitive mitochondrial NAD + levels dictate cell survival. Cell 130:1095–1107PubMedPubMedCentralCrossRefGoogle Scholar
  125. Ying W (2008) NAD +/NADH and NADP +/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10:179–206PubMedCrossRefGoogle Scholar
  126. Ying W et al (2007) Intranasal administration with NAD + profoundly decreases brain injury in a rat model of transient focal ischemia. Front Biosci 12:2728–2734PubMedCrossRefGoogle Scholar
  127. Yoshino J, Mills KF, Yoon MJ, S-i Imai (2011) Nicotinamide mononucleotide, a key NAD + intermediate, treats the pathophysiology of diet-and age-induced diabetes in mice. Cell Metab 14:528–536PubMedPubMedCentralCrossRefGoogle Scholar
  128. Yuan Y, Cruzat VF, Newsholme P, Cheng J, Chen Y, Lu Y (2016) Regulation of SIRT1 in aging: roles in mitochondrial function and biogenesis. Mech Ageing Dev 155:10–21PubMedCrossRefGoogle Scholar
  129. Zhang T et al (2009) Enzymes in the NAD + salvage pathway regulate SIRT1 activity at target gene promoters. J Biol Chem 284(30):20408PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zhang Y et al (2016) Exogenous NAD + administration significantly protects against myocardial ischemia/reperfusion injury in rat model. Am J Trans Res 8:3342Google Scholar
  131. Zhao Y, Liu XZ, Tian WW, Guan YF, Wang P, Miao CY (2014) Extracellular visfatin has nicotinamide phosphoribosyltransferase enzymatic activity and is neuroprotective against ischemic injury. CNS Neurosci Ther 20:539–547PubMedCrossRefGoogle Scholar
  132. Zhao Y et al (2015) Regenerative neurogenesis after ischemic stroke promoted by nicotinamide phosphoribosyltransferase–nicotinamide adenine dinucleotide cascade. Stroke 46:1966–1974PubMedCrossRefGoogle Scholar
  133. Zheng C, Han J, Xia W, Shi S, Liu J, Ying W (2012) NAD + administration decreases ischemic brain damage partially by blocking autophagy in a mouse model of brain ischemia. Neurosci Lett 512:67–71PubMedCrossRefGoogle Scholar
  134. Zhou H et al (2017) Ripk3 induces mitochondrial apoptosis via inhibition of FUNDC1 mitophagy in cardiac IR injury. Redox Biol 13:498–507PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Drug Applied Research Center, Department of PhysiologyTabriz University of Medical SciencesTabrizIran
  2. 2.Aging Research InstituteTabriz University of Medical SciencesTabrizIran
  3. 3.Department of Nuclear MedicineOdense University HospitalOdenseDenmark
  4. 4.Department of Clinical Research, BRIDGE: Brain Research-Inter-Disciplinary Guided ExcellenceUniversity of Southern DenmarkOdenseDenmark
  5. 5.Neuroscience Research CentreTabriz University of Medical SciencesTabrizIran
  6. 6.Molecular Medicine Research CentreTabriz University of Medical SciencesTabrizIran

Personalised recommendations