Advertisement

Biogerontology

, Volume 20, Issue 1, pp 1–16 | Cite as

Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction

  • Yukun Zhu
  • Xuewen Liu
  • Xuelu Ding
  • Fei Wang
  • Xin GengEmail author
Review Article

Abstract

Aging is a biological process characterized by a progressive functional decline in tissues and organs, which eventually leads to mortality. Telomeres, the repetitive DNA repeat sequences at the end of linear eukaryotic chromosomes protecting chromosome ends from degradation and illegitimate recombination, play a crucial role in cell fate and aging. Due to the mechanism of replication, telomeres shorten as cells proliferate, which consequently contributes to cellular senescence and mitochondrial dysfunction. Cells are the basic unit of organismal structure and function, and mitochondria are the powerhouse and metabolic center of cells. Therefore, cellular senescence and mitochondrial dysfunction would result in tissue or organ degeneration and dysfunction followed by somatic aging through multiple pathways. In this review, we summarized the main mechanisms of cellular senescence, mitochondrial malfunction and aging triggered by telomere attrition. Understanding the molecular mechanisms involved in the aging process may elicit new strategies for improving health and extending lifespan.

Keywords

Telomere Telomere shortening Cellular senescence Mitochondrial dysfunction Aging 

Notes

Funding

This project was supported by Chinese National Natural Science Foundation Grant (No. 81671054, No. 81771135), Key project of Tianjin Research Program of Application Foundation and Advanced Technology (No.15JCZDJC35100), Foundation of Key Laboratory of Genetic Engineering of the Ministry of Education (No. 201503).

Compliance with ethical standards

Conflicts of interest

The authors have no conflicts of interest to declare.

References

  1. Abdallah P, Luciano P, Runge KW, Lisby M, Geli V, Gilson E, Teixeira MT (2009) A two-step model for senescence triggered by a single critically short telomere. Nat Cell Biol 11:988–993.  https://doi.org/10.1038/ncb1911 Google Scholar
  2. Abreu E et al (2010) TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo. Mol Cell Biol 30:2971–2982.  https://doi.org/10.1128/MCB.00240-10 Google Scholar
  3. Acosta JC et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15:978–990.  https://doi.org/10.1038/ncb2784 Google Scholar
  4. Alder JK et al (2015) Telomere dysfunction causes alveolar stem cell failure. Proc Natl Acad Sci USA 112:5099–5104.  https://doi.org/10.1073/pnas.1504780112 Google Scholar
  5. Allsopp RC et al (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89:10114–10118Google Scholar
  6. Anso E et al (2017) The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat Cell Biol.  https://doi.org/10.1038/ncb3529 Google Scholar
  7. Armanios M, Alder JK, Parry EM, Karim B, Strong MA, Greider CW (2009) Short telomeres are sufficient to cause the degenerative defects associated with aging. Am J Hum Genet 85:823–832.  https://doi.org/10.1016/j.ajhg.2009.10.028 Google Scholar
  8. Arnoult N, Karlseder J (2015) Complex interactions between the DNA-damage response and mammalian telomeres. Nat Struct Mol Biol 22:859–866.  https://doi.org/10.1038/nsmb.3092 Google Scholar
  9. Azzalin CM, Lingner J (2015) Telomere functions grounding on TERRA firma. Trends Cell Biol 25:29–36.  https://doi.org/10.1016/j.tcb.2014.08.007 Google Scholar
  10. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318:798–801.  https://doi.org/10.1126/science.1147182 Google Scholar
  11. Baker DJ et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236.  https://doi.org/10.1038/nature10600 Google Scholar
  12. Baker DJ, Weaver RL, van Deursen JM (2013) p21 both attenuates and drives senescence and aging in BubR1 progeroid mice. Cell Rep 3:1164–1174.  https://doi.org/10.1016/j.celrep.2013.03.028 Google Scholar
  13. Baker DJ et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189.  https://doi.org/10.1038/nature16932 Google Scholar
  14. Balestro E et al (2016) Immune inflammation and disease progression in idiopathic pulmonary fibrosis. PLoS ONE 11:e0154516.  https://doi.org/10.1371/journal.pone.0154516 Google Scholar
  15. Bandaria JN, Qin PW, Berk V, Chu S, Yildiz A (2016) Shelterin protects chromosome ends by compacting telomeric chromatin. Cell 164:735–746.  https://doi.org/10.1016/j.cell.2016.01.036 Google Scholar
  16. Bar C, Blasco MA (2016) Telomeres and telomerase as therapeutic targets to prevent and treat age-related diseases. F1000Research.  https://doi.org/10.12688/f1000research.7020.1 Google Scholar
  17. Bar C, Huber N, Beier F, Blasco MA (2015) Therapeutic effect of androgen therapy in a mouse model of aplastic anemia produced by short telomeres. Haematologica 100:1267–1274.  https://doi.org/10.3324/haematol.2015.129239 Google Scholar
  18. Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA (2016) Metformin as a tool to target aging. Cell Metab 23:1060–1065.  https://doi.org/10.1016/j.cmet.2016.05.011 Google Scholar
  19. Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22:4212–4222.  https://doi.org/10.1093/Emboj/Cdg417 Google Scholar
  20. Bedrat A, Lacroix L, Mergny JL (2016) Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res 44:1746–1759.  https://doi.org/10.1093/nar/gkw006 Google Scholar
  21. Benarroch-Popivker D et al (2016) TRF2-mediated control of telomere DNA Topology as a mechanism for chromosome-end protection. Mol Cell 61:274–286.  https://doi.org/10.1016/j.molcel.2015.12.009 Google Scholar
  22. Bernardes de Jesus B, Schneeberger K, Vera E, Tejera A, Harley CB, Blasco MA (2011) The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell 10:604–621.  https://doi.org/10.1111/j.1474-9726.2011.00700.x Google Scholar
  23. Bernardes de Jesus B, Vera E, Schneeberger K, Tejera AM, Ayuso E, Bosch F, Blasco MA (2012) Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med 4:691–704.  https://doi.org/10.1002/emmm.201200245 Google Scholar
  24. Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, Carter TA, Olwin BB (2014) p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med 20:265–271.  https://doi.org/10.1038/nm.3465 Google Scholar
  25. Birch J, Barnes PJ, Passos JF (2018) Mitochondria, telomeres and cell senescence: implications for lung ageing and disease. Pharmacol Ther 183:34–49.  https://doi.org/10.1016/j.pharmthera.2017.10.005 Google Scholar
  26. Blackburn EH, Epel ES, Lin J (2015) Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350:1193–1198.  https://doi.org/10.1126/science.aab3389 Google Scholar
  27. Borah S et al (2015) Cancer. TERT promoter mutations and telomerase reactivation in urothelial cancer. Science 347:1006–1010.  https://doi.org/10.1126/science.1260200 Google Scholar
  28. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810.  https://doi.org/10.1126/science.1144090 Google Scholar
  29. Calado RT, Yewdell WT, Wilkerson KL, Regal JA, Kajigaya S, Stratakis CA, Young NS (2009) Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells. Blood 114:2236–2243.  https://doi.org/10.1182/blood-2008-09-178871 Google Scholar
  30. Chambers VS, Marsico G, Boutell JM, Di Antonio M, Smith GP, Balasubramanian S (2015) High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat Biotechnol 33:877–881.  https://doi.org/10.1038/nbt.3295 Google Scholar
  31. Chandel NS, Jasper H, Ho TT, Passegue E (2016) Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nat Cell Biol 18:823–832.  https://doi.org/10.1038/ncb3385 Google Scholar
  32. Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21:1424–1435.  https://doi.org/10.1038/nm.4000 Google Scholar
  33. Chu HP et al (2017) TERRA RNA antagonizes ATRX and protects telomeres. Cell 170(86–101):e116.  https://doi.org/10.1016/j.cell.2017.06.017 Google Scholar
  34. Cohen HY et al (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:390–392.  https://doi.org/10.1126/science.1099196 Google Scholar
  35. Colavitti R, Finkel T (2005) Reactive oxygen species as mediators of cellular senescence Iubmb. Life 57:277–281.  https://doi.org/10.1080/15216540500091890 Google Scholar
  36. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764.  https://doi.org/10.1038/nature03260 Google Scholar
  37. Cooke HJ, Smith BA (1986) Variability at the telomeres of the human X/Y pseudoautosomal region. Cold Spring Harb Symp Quant Biol 51(Pt 1):213–219Google Scholar
  38. Copelan EA (2006) Hematopoietic stem-cell transplantation. N Engl J Med 354:1813–1826.  https://doi.org/10.1056/NEJMra052638 Google Scholar
  39. Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118.  https://doi.org/10.1146/annurev-pathol-121808-102144 Google Scholar
  40. Correia-Melo C et al (2016) Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J 35:724–742.  https://doi.org/10.15252/embj.201592862 Google Scholar
  41. Cosgrove BD et al (2014) Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med 20:255–264.  https://doi.org/10.1038/nm.3464 Google Scholar
  42. Dabrowska A, Venero JL, Iwasawa R, Hankir MK, Rahman S, Boobis A, Hajji N (2015) PGC-1alpha controls mitochondrial biogenesis and dynamics in lead-induced neurotoxicity. Aging 7:629–647.  https://doi.org/10.18632/aging.100790 Google Scholar
  43. d’Adda di Fagagna F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8:512–522.  https://doi.org/10.1038/nrc2440 Google Scholar
  44. Davalos AR et al (2013) p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J Cell Biol 201:613–629.  https://doi.org/10.1083/jcb.201206006 Google Scholar
  45. de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110.  https://doi.org/10.1101/gad.1346005 Google Scholar
  46. de Lange T (2009) How telomeres solve the end-protection problem. Science 326:948–952.  https://doi.org/10.1126/science.1170633 Google Scholar
  47. de Magalhaes JP, Passos JF (2018) Stress, cell senescence and organismal ageing. Mech Ageing Dev 170:2–9.  https://doi.org/10.1016/j.mad.2017.07.001 Google Scholar
  48. Deng Z, Norseen J, Wiedmer A, Riethman H, Lieberman PM (2009) TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol Cell 35:403–413.  https://doi.org/10.1016/j.molcel.2009.06.025 Google Scholar
  49. Derevyanko A, Whittemore K, Schneider RP, Jimenez V, Bosch F, Blasco MA (2017) Gene therapy with the TRF1 telomere gene rescues decreased TRF1 levels with aging and prolongs mouse health span. Aging Cell 16:1353–1368.  https://doi.org/10.1111/acel.12677 Google Scholar
  50. Doksani Y, Wu JY, de Lange T, Zhuang X (2013) Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell 155:345–356.  https://doi.org/10.1016/j.cell.2013.09.048 Google Scholar
  51. Erdel F, Kratz K, Willcox S, Griffith JD, Greene EC, de Lange T (2017) Telomere recognition and assembly mechanism of mammalian shelterin. Cell Rep 18:41–53.  https://doi.org/10.1016/j.celrep.2016.12.005 Google Scholar
  52. Fallet E, Jolivet P, Soudet J, Lisby M, Gilson E, Teixeira MT (2014) Length-dependent processing of telomeres in the absence of telomerase. Nucleic Acids Res 42:3648–3665.  https://doi.org/10.1093/nar/gkt1328 Google Scholar
  53. Fang EF et al (2014) Defective mytophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 157:882–896.  https://doi.org/10.1016/j.cell.2014.03.026 Google Scholar
  54. Fang EF, Scheibye-Knudsen M, Chua KF, Mattson MP, Croteau DL, Bohr VA (2016) Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol 17:308–321.  https://doi.org/10.1038/nrm.2016.14 Google Scholar
  55. Flores I, Cayuela ML, Blasco MA (2005) Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309:1253–1256.  https://doi.org/10.1126/science.1115025 Google Scholar
  56. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol Ser A Biol Sci Med Sci 69(Suppl 1):S4–S9.  https://doi.org/10.1093/gerona/glu057 Google Scholar
  57. Frank AK, Tran DC, Qu RW, Stohr BA, Segal DJ, Xu L (2015) The shelterin TIN2 subunit mediates recruitment of telomerase to telomeres. PLoS Genet 11:e1005410.  https://doi.org/10.1371/journal.pgen.1005410 Google Scholar
  58. Frankel LK, Sallans L, Limbach PA, Bricker TM (2013) Oxidized amino acid residues in the vicinity of Q(A) and Pheo(D1) of the photosystem II reaction center: putative generation sites of reducing-side reactive oxygen species. PLoS ONE 8:e58042.  https://doi.org/10.1371/journal.pone.0058042 Google Scholar
  59. Frescas D, de Lange T (2014) TRF2-tethered TIN2 can mediate telomere protection by TPP1/POT1. Mol Cell Biol 34:1349–1362.  https://doi.org/10.1128/MCB.01052-13 Google Scholar
  60. Garcia S et al (2018) Overexpression of PGC-1 alpha in aging muscle enhances a subset of young-like molecular patterns. Aging Cell.  https://doi.org/10.1111/acel.12707 Google Scholar
  61. Gaullier G et al (2016) A higher-order entity formed by the flexible assembly of RAP1 with TRF2. Nucleic Acids Res 44:1962–1976.  https://doi.org/10.1093/nar/gkv1531 Google Scholar
  62. Gibson BA, Kraus WL (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 13:411–424.  https://doi.org/10.1038/nrm3376 Google Scholar
  63. Gomes AP et al (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during. Aging Cell 155:1624–1638.  https://doi.org/10.1016/j.cell.2013.11.037 Google Scholar
  64. Grabowska W, Sikora E, Bielak-Zmijewska A (2017) Sirtuins, a promising target in slowing down the ageing process. Biogerontology 18:447–476.  https://doi.org/10.1007/s10522-017-9685-9 Google Scholar
  65. Graf M et al (2017) Telomere length determines TERRA and R-loop regulation through the cell cycle. Cell 170(72–85):e14.  https://doi.org/10.1016/j.cell.2017.06.006 Google Scholar
  66. Greider CW, Blackburn EH (1989) A telomeric sequence in the RNA of tetrahymena telomerase required for telomere repeat synthesis. Nature 337:331–337.  https://doi.org/10.1038/337331a0 Google Scholar
  67. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514Google Scholar
  68. Hansel-Hertsch R, Di Antonio M, Balasubramanian S (2017) DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol 18:279–284.  https://doi.org/10.1038/nrm.2017.3 Google Scholar
  69. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460.  https://doi.org/10.1038/345458a0 Google Scholar
  70. Harley CB, Vaziri H, Counter CM, Allsopp RC (1992) The telomere hypothesis of cellular aging. Exp Gerontol 27:375–382Google Scholar
  71. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816Google Scholar
  72. He S, Sharpless NE (2017) Senescence in health and disease. Cell 169:1000–1011.  https://doi.org/10.1016/j.cell.2017.05.015 Google Scholar
  73. Herbert KE, Mistry Y, Hastings R, Poolman T, Niklason L, Williams B (2008) Angiotensin II-mediated oxidative DNA damage accelerates cellular senescence in cultured human vascular smooth muscle cells via telomere-dependent and independent pathways. Circ Res 102:201–208.  https://doi.org/10.1161/Circresaha.107.158626 Google Scholar
  74. Hernandez-Segura A, Nehme J, Demaria M (2018) Hallmarks of cellular senescence. Trends Cell Biol 28:436–453.  https://doi.org/10.1016/j.tcb.2018.02.001 Google Scholar
  75. Herranz N et al (2015) mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol 17:1205–1217.  https://doi.org/10.1038/ncb3225 Google Scholar
  76. Hitchings AW, Archer JR, Srivastava SA, Baker EH (2015) Safety of metformin in patients with chronic obstructive pulmonary disease and type 2 diabetes mellitus. COPD 12:126–131.  https://doi.org/10.3109/15412555.2015.898052 Google Scholar
  77. Hu C et al (2017) Structural and functional analyses of the mammalian TIN2-TPP1-TRF2 telomeric complex. Cell Res 27:1485–1502.  https://doi.org/10.1038/cr.2017.144 Google Scholar
  78. Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33:2908–2916.  https://doi.org/10.1093/nar/gki609 Google Scholar
  79. Itahana K, Dimri G, Campisi J (2001) Regulation of cellular senescence by p53. Eur J Biochem 268:2784–2791Google Scholar
  80. Ito K, Suda T (2014) Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 15:243–256.  https://doi.org/10.1038/nrm3772 Google Scholar
  81. Jang YC, Sinha M, Cerletti M, Dall’Osso C, Wagers AJ (2011) Skeletal muscle stem cells: effects of aging and metabolism on muscle regenerative function. Cold Spring Harb Symp Quant Biol 76:101–111.  https://doi.org/10.1101/sqb.2011.76.010652 Google Scholar
  82. Jeon OH et al (2017) Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 23:775–781.  https://doi.org/10.1038/nm.4324 Google Scholar
  83. Jiang J, Wang Y, Susac L, Chan H, Basu R, Zhou ZH, Feigon J (2018) Structure of telomerase with telomeric DNA. Cell 173(1179–1190):e1113.  https://doi.org/10.1016/j.cell.2018.04.038 Google Scholar
  84. Kang Y et al (2018) Telomere dysfunction disturbs macrophage mitochondrial metabolism and the NLRP3 inflammasome through the PGC-1alpha/TNFAIP3 axis. Cell Rep 22:3493–3506.  https://doi.org/10.1016/j.celrep.2018.02.071 Google Scholar
  85. Kar A, Willcox S, Griffith JD (2016) Transcription of telomeric DNA leads to high levels of homologous recombination and t-loops. Nucleic Acids Res 44:9369–9380.  https://doi.org/10.1093/nar/gkw779 Google Scholar
  86. Kauppila TES, Kauppila JHK, Larsson NG (2017) Mammalian mitochondria and aging: an update. Cell Metab 25:57–71.  https://doi.org/10.1016/j.cmet.2016.09.017 Google Scholar
  87. Kelleher C, Kurth I, Lingner J (2005) Human protection of telomeres 1 (POT1) is a negative regulator of telomerase activity in vitro. Mol Cell Biol 25:808–818.  https://doi.org/10.1128/MCB.25.2.808-818.2005 Google Scholar
  88. Kibe T, Zimmermann M, de Lange T (2016) TPP1 blocks an ATR-mediated resection mechanism at telomeres. Mol Cell 61:236–246.  https://doi.org/10.1016/j.molcel.2015.12.016 Google Scholar
  89. Kim NW et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015Google Scholar
  90. Kuilman T, Peeper DS (2009) Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 9:81–94.  https://doi.org/10.1038/nrc2560 Google Scholar
  91. Laberge RM, Awad P, Campisi J, Desprez PY (2012) Epithelial–mesenchymal transition induced by senescent fibroblasts. Cancer Microenviron 5:39–44.  https://doi.org/10.1007/s12307-011-0069-4 Google Scholar
  92. Laberge RM et al (2015) MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 17:1049–1061.  https://doi.org/10.1038/ncb3195 Google Scholar
  93. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293.  https://doi.org/10.1016/j.cell.2012.03.017 Google Scholar
  94. Latrick CM, Cech TR (2010) POT1–TPP1 enhances telomerase processivity by slowing primer dissociation and aiding translocation. EMBO J 29:924–933.  https://doi.org/10.1038/emboj.2009.409 Google Scholar
  95. Law MJ et al (2010) ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner. Cell 143:367–378.  https://doi.org/10.1016/j.cell.2010.09.023 Google Scholar
  96. Lawless C, Wang C, Jurk D, Merz A, Zglinicki T, Passos JF (2010) Quantitative assessment of markers for cell senescence. Exp Gerontol 45:772–778.  https://doi.org/10.1016/j.exger.2010.01.018 Google Scholar
  97. Lazzerini-Denchi E, Sfeir A (2016) Stop pulling my strings—what telomeres taught us about the DNA damage response. Nat Rev Mol Cell Biol 17:364–378.  https://doi.org/10.1038/nrm.2016.43 Google Scholar
  98. Lee YW, Arora R, Wischnewski H, Azzalin CM (2018) TRF1 participates in chromosome end protection by averting TRF2-dependent telomeric R loops. Nat Struct Mol Biol 25:147–153.  https://doi.org/10.1038/s41594-017-0021-5 Google Scholar
  99. Lei M, Zaug AJ, Podell ER, Cech TR (2005) Switching human telomerase on and off with hPOT1 protein in vitro. J Biol Chem 280:20449–20456.  https://doi.org/10.1074/jbc.M502212200 Google Scholar
  100. Loayza D (2003) POT1 as a terminal transducer of TRF1 telomere length control. Nature 445:1013–1018Google Scholar
  101. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217.  https://doi.org/10.1016/j.cell.2013.05.039 Google Scholar
  102. Lossaint G, Besnard E, Fisher D, Piette J, Dulic V (2011) Chk1 is dispensable for G2 arrest in response to sustained DNA damage when the ATM/p53/p21 pathway is functional. Oncogene 30:4261–4274.  https://doi.org/10.1038/onc.2011.135 Google Scholar
  103. Makarov VL, Hirose Y, Langmore JP (1997) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88:657–666Google Scholar
  104. Maryanovich M et al (2015) An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate. Nat Commun 6:7901.  https://doi.org/10.1038/ncomms8901 Google Scholar
  105. McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26:234–282Google Scholar
  106. McElligott R, Wellinger RJ (1997) The terminal DNA structure of mammalian chromosomes. EMBO J 16:3705–3714.  https://doi.org/10.1093/emboj/16.12.3705 Google Scholar
  107. McHugh D, Gil J (2017) Senescence and aging: causes, consequences, and therapeutic avenues. J Cell Biol.  https://doi.org/10.1083/jcb.201708092 Google Scholar
  108. McHugh D, Gil J (2018) Senescence and aging: causes, consequences, and therapeutic avenues. J Cell Biol 217:65–77.  https://doi.org/10.1083/jcb.201708092 Google Scholar
  109. Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13:1016–1023.  https://doi.org/10.1038/ncb2329 Google Scholar
  110. Montero JJ, Lopez de Silanes I, Grana O, Blasco MA (2016) Telomeric RNAs are essential to maintain telomeres. Nat Commun 7:12534.  https://doi.org/10.1038/ncomms12534 Google Scholar
  111. Moravec M et al (2016) TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe. EMBO Rep 17:999–1012.  https://doi.org/10.15252/embr.201541708 Google Scholar
  112. Morgan RG, Donato AJ, Walker AE (2018) Telomere uncapping and vascular aging. Am J Physiol Heart Circ Physiol.  https://doi.org/10.1152/ajpheart.00008.2018 Google Scholar
  113. Morin GB (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59:521–529Google Scholar
  114. Moyzis RK et al (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85:6622–6626Google Scholar
  115. Muezzinler A, Zaineddin AK, Brenner H (2013) A systematic review of leukocyte telomere length and age in adults. Ageing Res Rev 12:509–519.  https://doi.org/10.1016/j.arr.2013.01.003 Google Scholar
  116. Muller HJ (1938) The remaking of chromosomes. Collect Net-Woods Hole 13:181–195Google Scholar
  117. Munoz-Espin D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15:482–496.  https://doi.org/10.1038/nrm3823 Google Scholar
  118. Nakamaru Y et al (2009) A protein deacetylase SIRT1 is a negative regulator of metalloproteinase-9. FASEB J 23:2810–2819.  https://doi.org/10.1096/fj.08-125468 Google Scholar
  119. Nandakumar J, Bell CF, Weidenfeld I, Zaug AJ, Leinwand LA, Cech TR (2012) The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 492:285–289.  https://doi.org/10.1038/nature11648 Google Scholar
  120. Nelson G, Wordsworth J, Wang C, Jurk D, Lawless C, Martin-Ruiz C, von Zglinicki T (2012) A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11:345–349.  https://doi.org/10.1111/j.1474-9726.2012.00795.x Google Scholar
  121. Nikolich-Zugich J (2018) The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol 19:10–19.  https://doi.org/10.1038/s41590-017-0006-x Google Scholar
  122. Oganesian L, Moon IK, Bryan TM, Jarstfer MB (2006) Extension of G-quadruplex DNA by ciliate telomerase. EMBO J 25:1148–1159.  https://doi.org/10.1038/sj.emboj.7601006 Google Scholar
  123. Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41:181–190Google Scholar
  124. Parrinello S, Coppe JP, Krtolica A, Campisi J (2005) Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 118:485–496.  https://doi.org/10.1242/jcs.01635 Google Scholar
  125. Pricola KL, Kuhn NZ, Haleem-Smith H, Song Y, Tuan RS (2009) Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J Cell Biochem 108:577–588.  https://doi.org/10.1002/jcb.22289 Google Scholar
  126. Prolla TA, Denu JM (2014) NAD + deficiency in age-related mitochondrial dysfunction. Cell Metab 19:178–180.  https://doi.org/10.1016/j.cmet.2014.01.005 Google Scholar
  127. Rai R, Chen Y, Lei M, Chang S (2016) TRF2-RAP1 is required to protect telomeres from engaging in homologous recombination-mediated deletions and fusions. Nat Commun 7:10881Google Scholar
  128. Ray S, Bandaria JN, Qureshi MH, Yildiz A, Balci H (2014) G-quadruplex formation in telomeres enhances POT1/TPP1 protection against RPA binding. Proc Natl Acad Sci USA 111:2990–2995.  https://doi.org/10.1073/pnas.1321436111 Google Scholar
  129. Redon S, Reichenbach P, Lingner J (2010) The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 38:5797–5806.  https://doi.org/10.1093/nar/gkq296 Google Scholar
  130. Rera M et al (2011) Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab 14:623–634.  https://doi.org/10.1016/j.cmet.2011.09.013 Google Scholar
  131. Rhodes D, Lipps HJ (2015) G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res 43:8627–8637.  https://doi.org/10.1093/nar/gkv862 Google Scholar
  132. Rippe K, Luke B (2015) TERRA and the state of the telomere. Nat Struct Mol Biol 22:853–858.  https://doi.org/10.1038/nsmb.3078 Google Scholar
  133. Roake CM, Artandi SE (2017) Control of cellular aging, tissue function, and cancer by p53 downstream of telomeres. Cold Spring Harb Perspect Med.  https://doi.org/10.1101/cshperspect.a026088 Google Scholar
  134. Rocheteau P et al (2015) Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy. Nat Commun 6:10145.  https://doi.org/10.1038/ncomms10145 Google Scholar
  135. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118.  https://doi.org/10.1038/nature03354 Google Scholar
  136. Sagie S et al (2017) Telomeres in ICF syndrome cells are vulnerable to DNA damage due to elevated DNA:RNA hybrids. Nat Commun 8:14015.  https://doi.org/10.1038/ncomms14015 Google Scholar
  137. Sahin E et al (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470:359–365.  https://doi.org/10.1038/nature09787 Google Scholar
  138. Sarek G, Vannier JB, Panier S, Petrini JHJ, Boulton SJ (2016) TRF2 recruits RTEL1 to telomeres in S phase to promote T-loop unwinding. Mol Cell 61:788–789.  https://doi.org/10.1016/j.molcel.2016.02.016 Google Scholar
  139. Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, Pluckthun A (2001) In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc Natl Acad Sci USA 98:8572–8577.  https://doi.org/10.1073/pnas.141229498 Google Scholar
  140. Schoeftner S, Blasco MA (2008) Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10:228–236.  https://doi.org/10.1038/ncb1685 Google Scholar
  141. Sfeir A, Kosiyatrakul ST, Hockemeyer D, MacRae SL, Karlseder J, Schildkraut CL, de Lange T (2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138:90–103.  https://doi.org/10.1016/j.cell.2009.06.021 Google Scholar
  142. Sharpless NE, Depinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8:703–713.  https://doi.org/10.1038/nrm2241 Google Scholar
  143. Shay JW, Pereira-Smith OM, Wright WE (1991) A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 196:33–39Google Scholar
  144. Smith JS et al (2011) Rudimentary G-quadruplex-based telomere capping in Saccharomyces cerevisiae. Nat Struct Mol Biol 18:478–485.  https://doi.org/10.1038/nsmb.2033 Google Scholar
  145. Smogorzewska A, van Steensel B, Bianchi A, Oelmann S, Schaefer MR, Schnapp G, de Lange T (2000) Control of human telomere length by TRF1 and TRF2. Mol Cell Biol 20:1659–1668Google Scholar
  146. Son MJ, Kwon Y, Son T, Cho YS (2016) Restoration of mitochondrial NAD(+) levels delays stem cell senescence and facilitates reprogramming of aged somatic cells. Stem Cells 34:2840–2851.  https://doi.org/10.1002/stem.2460 Google Scholar
  147. Sousa-Victor P et al (2014) Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506:316–321.  https://doi.org/10.1038/nature13013 Google Scholar
  148. Soysal P et al (2016) Inflammation and frailty in the elderly: a systematic review and meta-analysis. Ageing Res Rev 31:1–8.  https://doi.org/10.1016/j.arr.2016.08.006 Google Scholar
  149. Steenstrup T et al (2017) Telomeres and the natural lifespan limit in humans. Aging 9:1130–1142.  https://doi.org/10.18632/aging.101216 Google Scholar
  150. Sugino A, Hirose S, Okazaki R (1972) RNA-linked nascent DNA fragments in Escherichia coli. Proc Natl Acad Sci USA 69:1863–1867Google Scholar
  151. Sui B, Hu C, Jin Y (2016) Mitochondrial metabolic failure in telomere attrition-provoked aging of bone marrow mesenchymal stem cells. Biogerontology 17:267–279.  https://doi.org/10.1007/s10522-015-9609-5 Google Scholar
  152. Sun N, Youle RJ, Finkel T (2016) The mitochondrial basis of aging. Mol Cell 61:654–666.  https://doi.org/10.1016/j.molcel.2016.01.028 Google Scholar
  153. Takai KK, Kibe T, Donigian JR, Frescas D, de Lange T (2011) Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol Cell 44:647–659.  https://doi.org/10.1016/j.molcel.2011.08.043 Google Scholar
  154. Takai KK, Kibe T, Donigian JR, Frescas D, de Lange T (2017) Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol Cell 67:162.  https://doi.org/10.1016/j.molcel.2017.05.033 Google Scholar
  155. Takubo K et al (2013) Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12:49–61.  https://doi.org/10.1016/j.stem.2012.10.011 Google Scholar
  156. van Deursen JM (2014) The role of senescent cells in ageing. Nature 509:439–446.  https://doi.org/10.1038/nature13193 Google Scholar
  157. Verdin E (2015) NAD(+) in aging, metabolism, and neurodegeneration. Science 350:1208–1213.  https://doi.org/10.1126/science.aac4854 Google Scholar
  158. Wahlestedt M et al (2013) An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state. Blood 121:4257–4264.  https://doi.org/10.1182/blood-2012-11-469080 Google Scholar
  159. Wang F, Podell ER, Zaug AJ, Yang Y, Baciu P, Cech TR, Lei M (2007) The POT1–TPP1 telomere complex is a telomerase processivity factor. Nature 445:506–510.  https://doi.org/10.1038/nature05454 Google Scholar
  160. Wang X et al (2011) A positive role for c-Abl in Atm and Atr activation in DNA damage response. Cell Death Differ 18:5–15.  https://doi.org/10.1038/cdd.2010.106 Google Scholar
  161. Wang Y, Wang XW, Flores ER, Yu J, Chang S (2016) Dysfunctional telomeres induce p53-dependent and independent apoptosis to compromise cellular proliferation and inhibit tumor formation. Aging Cell 15:646–660.  https://doi.org/10.1111/acel.12476 Google Scholar
  162. Watson JD (1972) Origin of concatemeric T7 DNA. Nat New biol 239:197–201Google Scholar
  163. Webb CJ, Zakian VA (2016) Telomerase RNA is more than a DNA template. RNA Biol 13:683–689.  https://doi.org/10.1080/15476286.2016.1191725 Google Scholar
  164. Wiley CD, Campisi J (2016) From ancient pathways to aging cells-connecting metabolism and cellular senescence. Cell Metab 23:1013–1021.  https://doi.org/10.1016/j.cmet.2016.05.010 Google Scholar
  165. Wiley CD et al (2016) Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab 23:303–314.  https://doi.org/10.1016/j.cmet.2015.11.011 Google Scholar
  166. Wu P, Takai H, de Lange T (2012) Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 150:39–52.  https://doi.org/10.1016/j.cell.2012.05.026 Google Scholar
  167. Wu RA, Upton HE, Vogan JM, Collins K (2017) Telomerase mechanism of telomere synthesis. Annu Rev Biochem 86:439–460.  https://doi.org/10.1146/annurev-biochem-061516-045019 Google Scholar
  168. Xin H et al. (2007) TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase Nature 445:559-562  https://doi.org/10.1038/nature05469
  169. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704.  https://doi.org/10.1038/366701a0 Google Scholar
  170. Xu L, Li S, Stohr BA (2013) The role of telomere biology in cancer. Annu Rev Pathol 8:49–78.  https://doi.org/10.1146/annurev-pathol-020712-164030 Google Scholar
  171. Yu TY, Kao YW, Lin JJ (2014) Telomeric transcripts stimulate telomere recombination to suppress senescence in cells lacking telomerase. Proc Natl Acad Sci USA 111:3377–3382.  https://doi.org/10.1073/pnas.1307415111 Google Scholar
  172. Zahler AM, Williamson JR, Cech TR, Prescott DM (1991) Inhibition of telomerase by G-quartet DNA structures. Nature 350:718–720.  https://doi.org/10.1038/350718a0 Google Scholar
  173. Zhang R, Chen W, Adams PD (2007) Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol 27:2343–2358.  https://doi.org/10.1128/MCB.02019-06 Google Scholar
  174. Zhang H et al (2016) NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352:1436–1443.  https://doi.org/10.1126/science.aaf2693 Google Scholar
  175. Zhu Y et al (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14:644–658.  https://doi.org/10.1111/acel.12344 Google Scholar
  176. Zole E, Ranka R (2018) Mitochondria, its DNA and telomeres in ageing and human population. Biogerontology 19:189–208.  https://doi.org/10.1007/s10522-018-9748-6 Google Scholar
  177. Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548.  https://doi.org/10.1126/science.1083430 Google Scholar
  178. Zwerschke W, Mazurek S, Stockl P, Hutter E, Eigenbrodt E, Jansen-Durr P (2003) Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence. Biochem J 376:403–411.  https://doi.org/10.1042/BJ20030816 Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Yukun Zhu
    • 1
    • 2
  • Xuewen Liu
    • 1
    • 2
  • Xuelu Ding
    • 1
    • 2
  • Fei Wang
    • 3
  • Xin Geng
    • 1
    • 2
    Email author
  1. 1.Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
  2. 2.Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Tianjin Medical UniversityTianjinChina
  3. 3.Department of Neurology, General HospitalTianjin Medical UniversityTianjinChina

Personalised recommendations