Advertisement

Biogerontology

, Volume 19, Issue 5, pp 415–433 | Cite as

The secretory phenotype of senescent astrocytes isolated from Wistar newborn rats changes with anti-inflammatory drugs, but does not have a short-term effect on neuronal mitochondrial potential

  • Luis Ángel Maciel-Barón
  • Sandra Lizbeth Morales-Rosales
  • Alejandro Silva-Palacios
  • Roxana Haydee Rodríguez-Barrera
  • Jorge Antonio García-Álvarez
  • Armando Luna-López
  • Viviana Isabel Pérez
  • Claudio Torres
  • Mina Königsberg
Research Article

Abstract

In the central nervous system (CNS), senescent astrocytes have been associated with neurodegeneration. Senescent cells secrete a complex mixture of pro-inflammatory factors, which are collectively called Senescence Associated Secretory Phenotype (SASP). The SASP components can vary depending on the cell type, senescence inducer and time. The SASP has been mainly studied in fibroblasts and epithelial cells, but little is known in the context of the CNS. Here, the SASP profile in senescent astrocytes isolated from Wistar newborn rats induced to senescence by oxidative stress or by proteasome inhibition was analyzed. Senescent astrocytes secreted predominantly chemokines and IL-1α, but no IL-6. The effect of the anti-inflammatory drugs, sulforaphane (SFN) and dehydroepiandrosterone (DHEA), on the SASP profile was evaluated. Our results showed that SFN and DHEA decreased IL-1α secretion while increasing IL-10, thus modifying the SASP to a less anti-inflammatory profile. Primary neurons were subjected to the conditioned media obtained from drug-treated senescent astrocytes, and their mitochondrial membrane potential was evaluated.

Keywords

Senescence inflammation central nervous system Astrocytes Neurons 

Notes

Acknowledgements

The authors would like to thank Dr. Rocío González-Vieira from UAM-I for animal supply and Dr. Ruth Rincón Heredia from IFC-UNAM and the CBS-UAMI Confocal Core for confocal images acquisition and analysis. Dr. Anahí Chavarría for her guidance in the cytokines field. This work was supported by CONACyT grant FON.INST/298/2016, as well as the “Red Temática de Investigación en Salud y Desarrollo Social” from CONACYT. Maciel-Barón, Silva-Palacios and Morales-Rosales are CONACyT scholarship holders.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to disclose.

Supplementary material

10522_2018_9767_MOESM1_ESM.pptx (41.9 mb)
Supplementary material 1 (PPTX 42939 kb)
10522_2018_9767_MOESM2_ESM.docx (13 kb)
Supplementary material 2 (DOCX 14 kb)

References

  1. Acosta JC et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15:978–990.  https://doi.org/10.1038/ncb2784 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amann R, Peskar BA (2002) Anti-inflammatory effects of aspirin and sodium salicylate. Eur J Pharmacol 447:1–9CrossRefPubMedGoogle Scholar
  3. Angiolillo AL et al (1995) Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med 182:155–162CrossRefPubMedGoogle Scholar
  4. Bhat R et al (2012) Astrocyte senescence as a component of Alzheimer’s disease. PLoS ONE 7:e45069.  https://doi.org/10.1371/journal.pone.0045069 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bitto A, Sell C, Crowe E, Lorenzini A, Malaguti M, Hrelia S, Torres C (2010) Stress-induced senescence in human and rodent astrocytes. Exp Cell Res 316:2961–2968.  https://doi.org/10.1016/j.yexcr.2010.06.021 CrossRefPubMedGoogle Scholar
  6. Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35:567–576.  https://doi.org/10.1002/jnr.490350513 CrossRefPubMedGoogle Scholar
  7. Chinta SJ, Lieu CA, Demaria M, Laberge RM, Campisi J, Andersen JK (2013) Environmental stress, ageing and glial cell senescence: a novel mechanistic link to Parkinson’s disease? J Intern Med 273:429–436.  https://doi.org/10.1111/joim.12029 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chinta SJ, Woods G, Rane A, Demaria M, Campisi J, Andersen JK (2015) Cellular senescence and the aging brain. Exp Gerontol 68:3–7.  https://doi.org/10.1016/j.exger.2014.09.018 CrossRefPubMedGoogle Scholar
  9. Chinta SJ et al (2018) Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease. Cell Rep 22:930–940.  https://doi.org/10.1016/j.celrep.2017.12.092 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cohen J, D’Agostino L, Wilson J, Tuzer F, Torres C (2017) Astrocyte senescence and metabolic changes in response to HIV antiretroviral therapy drugs. Front Aging Neurosci 9:281.  https://doi.org/10.3389/fnagi.2017.00281 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Collado M, Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10:51–57.  https://doi.org/10.1038/nrc2772 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Coppe JP et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868.  https://doi.org/10.1371/journal.pbio.0060301 CrossRefPubMedGoogle Scholar
  13. Coppe JP et al (2010) A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS ONE 5:e9188.  https://doi.org/10.1371/journal.pone.0009188 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Coppe JP, Rodier F, Patil CK, Freund A, Desprez PY, Campisi J (2011) Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. J Biol Chem 286:36396–36403.  https://doi.org/10.1074/jbc.M111.257071 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Courtois-Cox S, Jones SL, Cichowski K (2008) Many roads lead to oncogene-induced senescence. Oncogene 27:2801–2809.  https://doi.org/10.1038/sj.onc.1210950 CrossRefPubMedGoogle Scholar
  16. de Keizer PL (2017) The fountain of youth by targeting senescent cells? Trends Mol Med 23:6–17.  https://doi.org/10.1016/j.molmed.2016.11.006 CrossRefPubMedGoogle Scholar
  17. de Magalhaes JP, Passos JF (2018) Stress, cell senescence and organismal ageing. Mech Ageing Dev 170:2–9.  https://doi.org/10.1016/j.mad.2017.07.001 CrossRefPubMedGoogle Scholar
  18. Demaria M et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31:722–733.  https://doi.org/10.1016/j.devcel.2014.11.012 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29:313–326.  https://doi.org/10.1089/jir.2008.0027 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dimri GP et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367CrossRefPubMedGoogle Scholar
  21. Dong Z, Shang H, Chen YQ, Pan LL, Bhatia M, Sun J (2016) Sulforaphane protects pancreatic acinar cell injury by modulating Nrf2-mediated oxidative stress and NLRP3 inflammatory pathway. Oxid Med Cell Longev 2016:7864150.  https://doi.org/10.1155/2016/7864150 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dufour JH, Dziejman M, Liu MT, Leung JH, Lane TE, Luster AD (2002) IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol 168:3195–3204CrossRefPubMedGoogle Scholar
  23. El Kihel L (2012) Oxidative metabolism of dehydroepiandrosterone (DHEA) and biologically active oxygenated metabolites of DHEA and epiandrosterone (EpiA)—recent reports. Steroids 77:10–26.  https://doi.org/10.1016/j.steroids.2011.09.008 CrossRefPubMedGoogle Scholar
  24. Freund A, Orjalo AV, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16:238–246.  https://doi.org/10.1016/j.molmed.2010.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gadani SP, Walsh JT, Lukens JR, Kipnis J (2015) Dealing with danger in the CNS: the response of the immune system to injury. Neuron 87:47–62.  https://doi.org/10.1016/j.neuron.2015.05.019 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gaertner H et al (2008) Highly potent HIV inhibition: engineering a key anti-HIV structure from PSC-RANTES into MIP-1 beta/CCL4. Protein Eng Des Sel 21:65–72.  https://doi.org/10.1093/protein/gzm079 CrossRefPubMedGoogle Scholar
  27. Gonzalez-Meljem JM et al (2017) Stem cell senescence drives age-attenuated induction of pituitary tumours in mouse models of paediatric craniopharyngioma. Nat Commun 8:1819.  https://doi.org/10.1038/s41467-017-01992-5 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Greaney AJ, Maier NK, Leppla SH, Moayeri M (2016) Sulforaphane inhibits multiple inflammasomes through an Nrf2-independent mechanism. J Leukoc Biol 99:189–199.  https://doi.org/10.1189/jlb.3A0415-155RR CrossRefPubMedGoogle Scholar
  29. Hubackova S, Krejcikova K, Bartek J, Hodny Z (2012) IL1- and TGFbeta-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine ‘bystander senescence’. Aging (Albany NY) 4:932–951.  https://doi.org/10.18632/aging.100520 CrossRefGoogle Scholar
  30. Jeon OH et al (2017) Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 23:775–781.  https://doi.org/10.1038/nm.4324 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 98:12072–12077.  https://doi.org/10.1073/pnas.211053698 CrossRefPubMedGoogle Scholar
  32. Laberge RM et al (2012) Glucocorticoids suppress selected components of the senescence-associated secretory phenotype. Aging Cell 11:569–578.  https://doi.org/10.1111/j.1474-9726.2012.00818.x CrossRefPubMedPubMedCentralGoogle Scholar
  33. Laberge RM et al (2015) MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 17:1049–1061.  https://doi.org/10.1038/ncb3195 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Li C et al (2017) Programmed cell senescence in skeleton during late puberty. Nat Commun 8:1312.  https://doi.org/10.1038/s41467-017-01509-0 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lichte P et al (2014) Dehydroepiandrosterone modulates the inflammatory response in a bilateral femoral shaft fracture model. Eur J Med Res 19:27.  https://doi.org/10.1186/2047-783X-19-27 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Liou CJ, Huang WC (2011) Dehydroepiandrosterone suppresses eosinophil infiltration and airway hyperresponsiveness via modulation of chemokines and Th2 cytokines in ovalbumin-sensitized mice. J Clin Immunol 31:656–665.  https://doi.org/10.1007/s10875-011-9529-3 CrossRefPubMedGoogle Scholar
  37. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217.  https://doi.org/10.1016/j.cell.2013.05.039 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Maciel-Baron LA et al (2016) Senescence associated secretory phenotype profile from primary lung mice fibroblasts depends on the senescence induction stimuli. Age (Dordr) 38:26.  https://doi.org/10.1007/s11357-016-9886-1 CrossRefGoogle Scholar
  39. Maciel-Baron LA et al (2017) Cellular senescence, neurological function, and redox state. Antioxid Redox Signal.  https://doi.org/10.1089/ars.2017.7112 PubMedCrossRefGoogle Scholar
  40. Malaquin N, Martinez A, Rodier F (2016) Keeping the senescence secretome under control: molecular reins on the senescence-associated secretory phenotype. Exp Gerontol 82:39–49.  https://doi.org/10.1016/j.exger.2016.05.010 CrossRefPubMedGoogle Scholar
  41. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902CrossRefPubMedGoogle Scholar
  42. McCarthy DA, Clark RR, Bartling TR, Trebak M, Melendez JA (2013) Redox control of the senescence regulator interleukin-1alpha and the secretory phenotype. J Biol Chem 288:32149–32159.  https://doi.org/10.1074/jbc.M113.493841 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Moiseeva O et al (2013) Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-kappaB activation. Aging Cell 12:489–498.  https://doi.org/10.1111/acel.12075 CrossRefPubMedGoogle Scholar
  44. Munoz-Espin D et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1104–1118.  https://doi.org/10.1016/j.cell.2013.10.019 CrossRefPubMedGoogle Scholar
  45. Negrette-Guzman M, Huerta-Yepez S, Tapia E, Pedraza-Chaverri J (2013) Modulation of mitochondrial functions by the indirect antioxidant sulforaphane: a seemingly contradictory dual role and an integrative hypothesis. Free Radic Biol Med 65:1078–1089.  https://doi.org/10.1016/j.freeradbiomed.2013.08.182 CrossRefPubMedGoogle Scholar
  46. Omari KM, John G, Lango R, Raine CS (2006) Role for CXCR2 and CXCL1 on glia in multiple sclerosis. Glia 53:24–31.  https://doi.org/10.1002/glia.20246 CrossRefPubMedGoogle Scholar
  47. Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J (2009) Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci USA 106:17031–17036.  https://doi.org/10.1073/pnas.0905299106 CrossRefPubMedGoogle Scholar
  48. Pitzer C et al (2008) Granulocyte-colony stimulating factor improves outcome in a mouse model of amyotrophic lateral sclerosis. Brain 131:3335–3347.  https://doi.org/10.1093/brain/awn243 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pratschke S et al (2014) Dehydroepiandrosterone modulates T-cell response after major abdominal surgery. J Surg Res 189:117–125.  https://doi.org/10.1016/j.jss.2014.02.002 CrossRefPubMedGoogle Scholar
  50. Purcell M, Kruger A, Tainsky MA (2014) Gene expression profiling of replicative and induced senescence. Cell Cycle 13:3927–3937.  https://doi.org/10.4161/15384101.2014.973327 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556.  https://doi.org/10.1083/jcb.201009094 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Rutkowski K, Sowa P, Rutkowska-Talipska J, Kuryliszyn-Moskal A, Rutkowski R (2014) Dehydroepiandrosterone (DHEA): hypes and hopes. Drugs 74:1195–1207.  https://doi.org/10.1007/s40265-014-0259-8 CrossRefPubMedGoogle Scholar
  53. Schneider A et al (2005) The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115:2083–2098.  https://doi.org/10.1172/JCI23559 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Storer M et al (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155:1119–1130.  https://doi.org/10.1016/j.cell.2013.10.041 CrossRefPubMedGoogle Scholar
  55. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL (2013) Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 123:966–972.  https://doi.org/10.1172/JCI64098 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Torres C, Lewis L, Cristofalo VJ (2006) Proteasome inhibitors shorten replicative life span and induce a senescent-like phenotype of human fibroblasts. J Cell Physiol 207:845–853.  https://doi.org/10.1002/jcp.20630 CrossRefPubMedGoogle Scholar
  57. Toussaint O et al (2002) Stress-induced premature senescence: from biomarkers to likeliness of in vivo occurrence. Biogerontology 3:13–17CrossRefPubMedGoogle Scholar
  58. Triana-Martinez F et al (2014) Cell proliferation arrest and redox state status as part of different stages during senescence establishment in mouse fibroblasts. Biogerontology 15:165–176.  https://doi.org/10.1007/s10522-013-9488-6 CrossRefPubMedGoogle Scholar
  59. Triana-Martinez F, Pedraza-Vazquez G, Maciel-Baron LA, Konigsberg M (2016) Reflections on the role of senescence during development and aging. Arch Biochem Biophys 598:40–49.  https://doi.org/10.1016/j.abb.2016.04.004 CrossRefPubMedGoogle Scholar
  60. Turnquist C et al (2016) p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration. Cell Death Differ 23:1515–1528.  https://doi.org/10.1038/cdd.2016.37 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wang R et al (2017) Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell 16:564–574.  https://doi.org/10.1111/acel.12587 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wiley CD et al (2016) Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab 23:303–314.  https://doi.org/10.1016/j.cmet.2015.11.011 CrossRefPubMedGoogle Scholar
  63. Wu Z, Yu Y, Liu C, Xiong Y, Montani JP, Yang Z, Ming XF (2015) Role of p38 mitogen-activated protein kinase in vascular endothelial aging: interaction with Arginase-II and S6K1 signaling pathway. Aging (Albany NY) 7:70–81.  https://doi.org/10.18632/aging.100722 CrossRefGoogle Scholar
  64. Xiang J, George SL, Wunschmann S, Chang Q, Klinzman D, Stapleton JT (2004) Inhibition of HIV-1 replication by GB virus C infection through increases in RANTES, MIP-1alpha, MIP-1beta, and SDF-1. Lancet 363:2040–2046.  https://doi.org/10.1016/S0140-6736(04)16453-2 CrossRefPubMedGoogle Scholar
  65. Yu C, Narasipura SD, Richards MH, Hu XT, Yamamoto B, Al-Harthi L (2017) HIV and drug abuse mediate astrocyte senescence in a beta-catenin-dependent manner leading to neuronal toxicity. Aging Cell 16:956–965.  https://doi.org/10.1111/acel.12593 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Luis Ángel Maciel-Barón
    • 1
    • 7
  • Sandra Lizbeth Morales-Rosales
    • 1
    • 7
  • Alejandro Silva-Palacios
    • 1
    • 7
  • Roxana Haydee Rodríguez-Barrera
    • 2
  • Jorge Antonio García-Álvarez
    • 3
  • Armando Luna-López
    • 4
  • Viviana Isabel Pérez
    • 5
  • Claudio Torres
    • 6
  • Mina Königsberg
    • 1
  1. 1.División de Ciencias Biológicas y de la Salud, Departamento de Ciencias de la SaludUniversidad Autónoma Metropolitana-IztapalapaCiudad de MéxicoMexico
  2. 2.Centro de Investigación en Ciencias de la Salud (CICSA)Universidad Anáhuac México Campus NorteNaucalpan de JuárezMexico
  3. 3.Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  4. 4.Instituto Nacional de Geriatría, SSACiudad de MéxicoMexico
  5. 5.Linus Pauling InstituteOregon State UniversityCorvallisUSA
  6. 6.Department of Pathology and Laboratory MedicineDrexel University College of MedicinePhiladelphiaUSA
  7. 7.Posgrado en Biología ExperimentalUniversidad Autónoma Metropolitana-IztapalapaCiudad de MéxicoMexico

Personalised recommendations