Advertisement

Biogerontology

, Volume 19, Issue 2, pp 109–120 | Cite as

Natural plant hormones cytokinins increase stress resistance and longevity of Caenorhabditis elegans

  • Alena Kadlecová
  • Tomáš Jirsa
  • Ondřej Novák
  • Jan Kammenga
  • Miroslav Strnad
  • Jiří VollerEmail author
Research Article

Abstract

Cytokinins are phytohormones that are involved in many processes in plants, including growth, differentiation and leaf senescence. However, they also have various activities in animals. For example, kinetin and trans-zeatin can reduce levels of several aging markers in human fibroblasts. Kinetin can also protect mice against oxidative and glyoxidative stress, and prolong fruit flies’ lifespan. Additionally, several cytokinins are currently used in cosmetics. To extend knowledge of the breadth of cytokinins’ activities, we examined effects of natural cytokinin bases on the model nematode Caenorhabditis elegans. We found that kinetin, para-topolin and meta-topolin prolonged the lifespan of C. elegans. Kinetin also protected the organism against oxidative and heat stress. Furthermore, our results suggest that presence of reactive oxygen species, but not DAF-16 (the main effector of the insulin/insulin-like growth factor signaling pathway), is required for the beneficial effects of kinetin. Ultra-high performance liquid chromatography-tandem mass spectrometric analysis showed that kinetin is unlikely to occur naturally in C. elegans, but the worm efficiently absorbs and metabolizes it into kinetin riboside and kinetin riboside-5′-monophosphate.

Keywords

Cytokinin Kinetin Topolin Zeatin Phytohormones Aging Caenorhabditis elegans 

Notes

Acknowledgements

Strains used in this study were provided by the CGC, which is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440). The authors are grateful to Hana Martínková for her help with phytohormone analyses. This study was supported by the Ministry of Education, Youth and Sports of the Czech Republic (National Program for Sustainability I, grant nos. LO1204 and LO1304; INTER-COST LTC17 project code LTC17072). This article is based upon work from COST Action BM1408, supported by COST (European Cooperation in Science and Technology).

Supplementary material

10522_2017_9742_MOESM1_ESM.pdf (77 kb)
Supplementary material 1 (PDF 76 kb)

References

  1. An S, Cha HJ, Ko JM, Han H, Kim SY, Kim KS, Lee SJ, An IS, Kim S, Youn HJ et al (2017) Kinetin improves barrier function of the skin by modulating keratinocyte differentiation markers. Ann Dermatol 29(1):6–12CrossRefPubMedPubMedCentralGoogle Scholar
  2. Antebi A (2007) Genetics of aging in Caenorhabditis elegans. PLoS Genet 3(9):e129CrossRefPubMedCentralGoogle Scholar
  3. Antoniadi I, Plačková L, Simonovik B, Doležal K, Turnbull C, Ljung K, Novák O (2015) Cell-type-specific cytokinin distribution within the Arabidopsis primary root apex. Plant Cell 27(7):1955–1967CrossRefPubMedPubMedCentralGoogle Scholar
  4. Apfeld J, O’Connor G, McDonagh T, DiStefano P, Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18(24):3004–3009CrossRefPubMedPubMedCentralGoogle Scholar
  5. Axelrod F, Liebes L, Gold-von Simson G, Mendoza S, Mull J, Leyne M, Norcliffe-Kaufmann L, Kaufmann H, Slaugenhaupt S (2011) Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia. Pediatr Res 70(5):480–483CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barbieri M, Bonafè M, Franceschi C, Paolisso G (2003) Insulin/IGF signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol 285(5):1064–1071Google Scholar
  7. Barciszewski J, Siboska G, Pedersen B, Clark B, Rattan S (1996) Evidence for the presence of kinetin in DNA and cell extracts. FEBS Lett 393(2):197–200CrossRefPubMedGoogle Scholar
  8. Barciszewski J, Mielcarek M, Stobiecki M, Siboska G, Clark B (2000) Identification of 6-furfuryladenine (kinetin) in human urine. Biochem Biophys Res Commun 279(1):69–73CrossRefPubMedGoogle Scholar
  9. Brizzolari A, Marinello C, Carini M, Santaniello E, Biondi P (2016) Evaluation of the antioxidant activity and capacity of some natural N6-substituted adenine derivatives (cytokinins) by fluorimetric and spectrophotometric assays. J Chromatogr B 1019:164–168CrossRefGoogle Scholar
  10. Cabello C, Bair W, Ley S, Lamore S, Azimian S, Wondrak G (2009) The experimental chemotherapeutic N6-furfuryladenosine (kinetin-riboside) induces rapid ATP depletion, genotoxic stress, and CDKN1A (p21) upregulation in human cancer cell lines. Biochem Pharmacol 77(7):1125–1138CrossRefPubMedGoogle Scholar
  11. Cheong J, Goh D, Yong J, Tan S, Ong E (2009) Inhibitory effect of kinetin riboside in human heptamoa, HepG2. Mol BioSyst 5(1):91–98CrossRefPubMedGoogle Scholar
  12. Choi S, Jeong C, Choi S, Chun J, Kim Y, Lee J, Shin D, Heo H (2009) Zeatin prevents amyloid β-induced neurotoxicity and scopolamine-induced cognitive deficits. J Med Food 12(2):271–277CrossRefPubMedGoogle Scholar
  13. Corsi A (2006) A biochemist’s guide to C. elegans. Anal Biochem 359(1):1CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dassano A, Mancuso M, Giardullo P, De Cecco L, Ciuffreda P, Santaniello E, Saran A, Dragani TA, Colombo F (2014) N6-isopentenyladenosine and analogs activate the NRF2-mediated antioxidant re- sponse. Redox Biol 2:580–589CrossRefPubMedPubMedCentralGoogle Scholar
  15. Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D (2016) ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxidative Med Cell Longev 2016:1–18CrossRefGoogle Scholar
  16. De Haes W, Frooninckx L, Van Assche R, Smolders A, Depuydt G, Billen J, Braeckman B, Schoofs L, Temmerman L (2014) Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proc Natl Acad Sci 111(24):E2501–E2509CrossRefPubMedPubMedCentralGoogle Scholar
  17. Han S, Lee D, Lee H, Kim D, Son H, Yang J, Lee S, Kim S (2016) OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget 7(35):56147–56152PubMedPubMedCentralGoogle Scholar
  18. Hardie D, Hawley S (2001) AMP-activated protein kinase: the energy charge hypothesis revisited. Bioes- says 23(12):1112–1119CrossRefGoogle Scholar
  19. Harman D (1955) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300CrossRefGoogle Scholar
  20. Hertz N, Berthet A, Sos M, Thorn K, Burlingame A, Nakamura K, Shokat K (2013) A neo-substrate that amplifies catalytic activity of Parkinson’s-disease-related kinase PINK1. Cell 154(4):737–747CrossRefPubMedPubMedCentralGoogle Scholar
  21. Inbaraj JJ, Chignell CF (2004) Cytotoxic action of juglone and plumbagin: a mechanistic study using HaCaT keratinocytes. Chem Res Toxicol 17(1):55–62CrossRefPubMedGoogle Scholar
  22. Ishii Y, Hori Y, Sakai S, Honma Y (2002) Control of differentiation and apoptosis of human myeloid leukemia cells by cytokinins and cytokinin nucleosides, plant redifferentiation-inducing hormones. Cell Growth Differ 13(1):19–26PubMedGoogle Scholar
  23. Jabłonska-Trypuć A, Matejczyk M, Czerpak R (2016) N6-benzyladenine and kinetin influence antioxida- tive stress parameters in human skin fibroblasts. Mol Cell Biochem 413(12):97–107CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R et al (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366(6454):461–464CrossRefPubMedGoogle Scholar
  25. Kieber J, Schaller G (2014) Cytokinins. Arabidopsis Book 12:e0168CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kim M, Choi S, Lim S, Kim H, Kim Y, Yoon H, Shin D (2008) Zeatin supplement improves scopolamine- induced memory impairment in mice. Biosci Biotechnol Biochem 72(2):577–581CrossRefPubMedGoogle Scholar
  27. Lai C, Chou C, Ch’ang L, Liu C, Lin W (2000) Identification of novel human genes evolutionarily con- served in Caenorhabditis elegans by comparative proteomics. Genome Res 10(5):703–713CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lee JH, Chung KY, Bang D, Lee KH (2006) Searching for aging-related proteins in human dermal mi- crovascular endothelial cells treated with anti-aging agents. Proteomics 6(4):1351–1361CrossRefPubMedGoogle Scholar
  29. Lithgow G, White T, Melov S, Johnson T (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci 92(16):7540–7544CrossRefPubMedPubMedCentralGoogle Scholar
  30. Liu Y, Zhang Z, Yang X (2011) Kinetin protects against lipid peroxidation and improves antioxidant status in cultured astrocytes and mouse brain exposed to D-galactose. Afr J Biotech 10(55):11721–11727Google Scholar
  31. Mattson M (2008) Hormesis defined. Ageing Res Rev 7(1):1–7CrossRefPubMedGoogle Scholar
  32. McCullough J, Garcia R, Reece B (2008) A clinical study of topical Pyratine 6 for improving the appearance of photodamaged skin. J Drugs Dermatol 7(2):131–135PubMedGoogle Scholar
  33. McDaniel D, Neudecker B, DiNardo J, Lewis J, Maibach H (2005) Idebenone: a new antioxidant–part 1. Relative assessment of oxidative stress protection capacity compared to commonly known antioxidants. J Cosmet Dermatol 4(1):10–17CrossRefPubMedGoogle Scholar
  34. Milo R, Jorgensen P, Moran U, Weber G, Springer M (2009) BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res 38(suppl_1):D750–D753Google Scholar
  35. Mlejnek P, Doležel P (2005) Apoptosis induced by N6-substituted derivatives of adenosine is related to intracellular accumulation of corresponding mononucleotides in HL-60 cells. Toxicol In Vitro 19(7):985–990CrossRefPubMedGoogle Scholar
  36. Mlejnek P, Kuglik P (2000) Induction of apoptosis in HL-60 cells by N6-benzyladenosine. J Cell Biochem 77(1):6–17CrossRefPubMedGoogle Scholar
  37. Mungai P, Waypa G, Jairaman A, Prakriya M, Dokic D, Ball M, Schumacker P (2011) Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Mol Cell Biol 31(17):3531–3545CrossRefPubMedPubMedCentralGoogle Scholar
  38. Olsen A, Siboska G, Clark B, Rattan S (1999) N6-furfuryladenine, kinetin, protects against Fenton reaction-mediated oxidative damage to DNA. Biochem Biophys Res Commun 265(2):499–502CrossRefPubMedGoogle Scholar
  39. Onken B, Driscoll M (2010) Metformin induces a dietary restriction–like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1. PLoS ONE 5(1):e8758CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pisanti S, Picardi P, Ciaglia E, Margarucci L, Ronca R, Giacomini A, Malfitano AM, Casapullo A, Laezza C, Gazzerro P et al (2014) Antiangiogenic effects of N6-isopentenyladenosine, an endogenous isoprenoid end product, mediated by AMPK activation. FASEB J 28(3):1132–1144CrossRefPubMedGoogle Scholar
  41. Pros E, Fernández-Rodríguez J, Benito L, Ravella A, Capellá G, Blanco I, Serra E, Lázaro C (2009) Modulation of aberrant NF1 pre-mRNA splicing by kinetin treatment. Eur J Hum Genet 18(5):614–617CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rattan S (2008) Principles and practice of hormetic treatment of aging and age-related diseases. Hum Exp Toxicol 27(2):151–154CrossRefPubMedGoogle Scholar
  43. Rattan S, Clark B (1994) Kinetin delays the onset of aging characteristics in human fibroblasts. Biochem Biophys Res Commun 201(2):665–672CrossRefPubMedGoogle Scholar
  44. Rattan S, Sodagam L (2005) Gerontomodulatory and youth-preserving effects of zeatin on human skin fibroblasts undergoing aging in vitro. Rejuvenation Res 8(1):46–57CrossRefPubMedGoogle Scholar
  45. Ristow M, Schmeisser K (2014) Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose Response 12(2):288–341CrossRefPubMedPubMedCentralGoogle Scholar
  46. Schulz T, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6(4):280–293CrossRefPubMedGoogle Scholar
  47. Sharma S, Kaur P, Rattan S (1995) Plant growth hormone kinetin delays aging, prolongs the lifespan, and slows down development of the fruitfly Zaprionus paravittiger. Biochem Biophys Res Commun 216(3):1067–1071CrossRefPubMedGoogle Scholar
  48. Sharma S, Kaur J, Rattan S (1997) Increased longevity of kinetin-fed Zaprionus fruitflies is accompanied by their reduced fecundity and enhanced catalase activity. IUBMB Life 41(5):869–875CrossRefGoogle Scholar
  49. Slaugenhaupt S, Mull J, Leyne M, Cuajungco M, Gill S, Hims M, Quintero F, Axelrod F, Gusella J (2004) Rescue of a human mRNA splicing defect by the plant cytokinin kinetin. Hum Mol Genet 13(4):429–436CrossRefPubMedGoogle Scholar
  50. So S, Miyahara K, Ohshima Y (2011) Control of body size in C. elegans dependent on food and insulin/IGF-1 signal. Genes Cells 16(6):639–651CrossRefPubMedGoogle Scholar
  51. Solis G, Petrascheck M (2011) Measuring Caenorhabditis elegans life span in 96 well microtiter plates. J Vis Exp.  https://doi.org/10.3791/2496 PubMedPubMedCentralGoogle Scholar
  52. Strange K (2006) C. elegans: methods and applications book (series: methods in molecular biology)Google Scholar
  53. Svačinová J, Novák O, Plačková L, Lenobel R, Holík J, Strnad M, Doležal K (2012) A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8(1):17CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tullet J (2015) DAF-16 target identification in C. elegans: past, present and future. Biogerontology 16(2):221–234CrossRefPubMedGoogle Scholar
  55. Verbeke P, Siboska G, Clark B, Rattan S (2000) Kinetin inhibits protein oxidation and glycoxidation in vitro. Biochem Biophys Res Commun 276(3):1265–1270CrossRefPubMedGoogle Scholar
  56. Voller J, Zatloukal M, Lenobel R, Doležal K, Béreš T, Kryštof V, Spíchal L, Niemann P, Džubák P, Hajdúch M (2010) Anticancer activity of natural cytokinins: a structure–activity relationship study. Phytochemistry 71(11):1350–1359CrossRefPubMedGoogle Scholar
  57. Voller J, Béres T, Zatloukal M, Kaminski P, Niemann P, Doležal K, Džubák P, Hajdúch M, Strnad M (2017a) The natural cytokinin 2OH3MeOBAR induces cell death by a mechanism that is different from that of the “classical” cytokinin ribosides. Phytochemistry 136:156–164CrossRefPubMedGoogle Scholar
  58. Voller J, Maková B, Kadlecová A, Gonzalez G, Strnad M (2017b) Plant hormone cytokinins for modulating human aging and age-related diseases. In: Hormones in ageing and longevity. Springer, pp 311–335Google Scholar
  59. Wanitphakdeedecha R, Meeprathom W, Manuskiatti W et al (2015) Efficacy and safety of 0.1% kinetin cream in the treatment of photoaging skin. Indian J Dermatol Venereol Leprol 81(5):547CrossRefPubMedGoogle Scholar
  60. Wu J, Weinstein G, Kricorian G, Kormeili T, McCullough J (2007) Topical kinetin 0.1% lotion for improving the signs and symptoms of rosacea. Clin Exp Dermatol 32(6):693–695CrossRefPubMedGoogle Scholar
  61. Zhou K, Pincus Z, Slack F (2011) Longevity and stress in Caenorhabditis elegans. Aging (Albany NY) 3(8):733–753CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCRPalacký UniversityOlomoucCzech Republic
  2. 2.Laboratory of NematologyWageningen UniversityWageningenThe Netherlands
  3. 3.Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and DentistryPalacký UniversityOlomoucCzech Republic

Personalised recommendations