Advertisement

Biogerontology

, Volume 19, Issue 6, pp 537–545 | Cite as

Immune parameters associated with mortality in the elderly are context-dependent: lessons from Sweden, Holland and Belgium

  • Graham Pawelec
Research Article

Abstract

The pioneering Swedish OCTO/NONA-Immune longitudinal studies led by Anders Wikby in Jönköping in the 1990s established a cluster of simple baseline immune parameters associated with excess mortality in 85 year-old non-institutionalized individuals over 2, 4 and 6-year follow-up. We dubbed this cluster the “Immune Risk Profile” (IRP) consisting of poor proliferative responses of peripheral blood mononuclear cells to T cell mitogens, accumulations of CD8+ CD28− T-cells resulting in an inverted CD4:8 ratio, decreased amounts of B-cells, and seropositivity for Cytomegalovirus (CMV). The concept of the IRP has since been applied by others to many different populations in different circumstances and at different ages, but in general without specifically establishing whether the same risk factors were relevant in the tested subjects. However, our own later studies showed that risk factors in aged populations from The Netherlands and Belgium were markedly different, indicating that the IRP cannot simply be transferred between populations. Moreover, there was a striking sex difference in the Belgian study, which was the only one large enough to include sufficient numbers of old men. The reasons for these marked differences between populations which one might have assumed a priori to be quite similar to one another are not clear, and many candidates can be speculated upon, but the important lesson is that there is a marked context-dependency of immune biomarkers of ageing, suggesting that IRPs cannot be assumed to be identical in different populations.

Keywords

Immune risk profile Cytomegalovirus Immunosenescence 

Notes

Acknowledgments

The author’s own work was most recently supported by grants from the Deutsche Forschungsgemeinschaft (DFG PA 361/22), the Bundesministerium für Bildung und Forschung (BMBF 16SV5536 K), the European Commission (FP7 LIP F2-2011-259679, IDEAL), and an unrestricted educational grant from the Croeni Foundation.

References

  1. Adriaensen W, Derhovanessian E, Vaes B, Van Pottelbergh G, Degryse JM, Pawelec G et al (2015) CD4:8 ratio > 5 is associated with a dominant naive T-cell phenotype and impaired physical functioning in CMV-seropositive very elderly people: results from the BELFRAIL study. J Gerontol A 70(2):143–154.  https://doi.org/10.1093/gerona/glu018 CrossRefGoogle Scholar
  2. Adriaensen W, Pawelec G, Vaes B, Hamprecht K, Derhovanessian E, van Pottelbergh G et al (2017) CD4:8 ratio above 5 is associated with all-cause mortality in CMV-seronegative very old women: results from the BELFRAIL Study. J Gerontol A 72(9):1155–1162.  https://doi.org/10.1093/gerona/glw215 CrossRefGoogle Scholar
  3. Bertram L, Bockenhoff A, Demuth I, Duzel S, Eckardt R, Li SC et al (2014) Cohort profile: the Berlin Aging Study II (BASE-II). Int J Epidemiol 43(3):703–712.  https://doi.org/10.1093/ije/dyt018 CrossRefPubMedGoogle Scholar
  4. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12):2853–2868.  https://doi.org/10.1371/journal.pbio.0060301 CrossRefPubMedGoogle Scholar
  5. Derhovanessian E, Maier AB, Beck R, Jahn G, Hahnel K, Slagboom PE et al (2010) Hallmark features of immunosenescence are absent in familial longevity. J Immunol 185(8):4618–4624.  https://doi.org/10.4049/jimmunol.1001629 CrossRefPubMedGoogle Scholar
  6. Derhovanessian E, Maier AB, Hahnel K, Beck R, de Craen AJ, Slagboom EP et al (2011) Infection with cytomegalovirus but not herpes simplex virus induces the accumulation of late-differentiated CD4+ and CD8+ T-cells in humans. J Gen Virol 92(Pt 12):2746–2756.  https://doi.org/10.1099/vir.0.036004-0 CrossRefPubMedGoogle Scholar
  7. Derhovanessian E, Chen S, Maier AB, Hahnel K, de Craen AJ, Roelofs H et al (2015) CCR4+ regulatory T cells accumulate in the very elderly and correlate with superior 8-year survival. J Gerontol A 70(8):917–923.  https://doi.org/10.1093/gerona/glu128 CrossRefGoogle Scholar
  8. Ferguson FG, Wikby A, Maxson P, Olsson J, Johansson B (1995) Immune parameters in a longitudinal study of a very old population of Swedish people: a comparison between survivors and nonsurvivors. J Gerontol A 50(6):B378–B382CrossRefGoogle Scholar
  9. Formiga F, Ferrer A, Padros G, Cintra A, Pujol R (2014) Inverted CD4:CD8 ratio is not associated with three-year mortality in a sample of community-dwelling oldest old: the OCTABAIX immune study. J Nutr Health Aging 18(4):425–428.  https://doi.org/10.1007/s12603-013-0403-2 CrossRefPubMedGoogle Scholar
  10. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E et al (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254CrossRefGoogle Scholar
  11. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F et al (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128(1):92–105.  https://doi.org/10.1016/j.mad.2006.11.016 CrossRefPubMedGoogle Scholar
  12. Fulop T, Witkowski JM, Pawelec G, Alan C, Larbi A (2014) On the immunological theory of aging. Interdiscip Top Gerontol 39:163–176.  https://doi.org/10.1159/000358904 CrossRefPubMedGoogle Scholar
  13. Hadrup SR, Strindhall J, Kollgaard T, Seremet T, Johansson B, Pawelec G et al (2006) Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J Immunol. 176(4):2645–2653CrossRefGoogle Scholar
  14. Hallgren HM, Bergh N, Rodysill KJ, O’Leary JJ (1988) Lymphocyte proliferative response to PHA and anti-CD3/Ti monoclonal antibodies, T cell surface marker expression, and serum IL-2 receptor levels as biomarkers of age and health. Mech Ageing Dev 43(2):175–185CrossRefGoogle Scholar
  15. Huppert FA, Pinto EM, Morgan K, Brayne C (2003) Survival in a population sample is predicted by proportions of lymphocyte subsets. Mech Ageing Dev 124(4):449–451CrossRefGoogle Scholar
  16. Jagger A, Shimojima Y, Goronzy JJ, Weyand CM (2014) Regulatory T cells and the immune aging process: a mini-review. Gerontology. 60(2):130–137.  https://doi.org/10.1159/000355303 CrossRefPubMedGoogle Scholar
  17. Lagaay AM, van Asperen IA, Hijmans W (1992) The prevalence of morbidity in the oldest old, aged 85 and over: a population-based survey in Leiden, The Netherlands. Arch Gerontol Geriatr 15(2):115–131CrossRefGoogle Scholar
  18. McEwen BS (2003) Interacting mediators of allostasis and allostatic load: towards an understanding of resilience in aging. Metabolism 52(10 Suppl 2):10–16CrossRefGoogle Scholar
  19. Ndumbi P, Gilbert L, Tsoukas CM (2015) Comprehensive evaluation of the immune risk phenotype in successfully treated HIV-infected individuals. PLoS ONE 10(2):e0117039.  https://doi.org/10.1371/journal.pone.0117039 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Nilsson SE, Takkinen S, Tryding N, Evrin PE, Berg S, McClearn G et al (2003a) Association of biochemical values with morbidity in the elderly: a population-based Swedish study of persons aged 82 or more years. Scand J Clin Lab Investig 63(7–8):457–466CrossRefGoogle Scholar
  21. Nilsson BO, Ernerudh J, Johansson B, Evrin PE, Lofgren S, Ferguson FG et al (2003b) Morbidity does not influence the T-cell immune risk phenotype in the elderly: findings in the Swedish NONA Immune Study using sample selection protocols. Mech Ageing Dev 124(4):469–476CrossRefGoogle Scholar
  22. Olsson J, Wikby A, Johansson B, Lofgren S, Nilsson BO, Ferguson FG (2000) Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech Ageing Dev 121(1–3):187–201PubMedGoogle Scholar
  23. Ouyang Q, Wagner WM, Wikby A, Walter S, Aubert G, Dodi AI et al (2003a) Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old. J Clin Immunol 23(4):247–257CrossRefGoogle Scholar
  24. Ouyang Q, Wagner WM, Voehringer D, Wikby A, Klatt T, Walter S et al (2003b) Age-associated accumulation of CMV-specific CD8+ T cells expressing the inhibitory killer cell lectin-like receptor G1 (KLRG1). Exp Gerontol 38(8):911–920CrossRefGoogle Scholar
  25. Ouyang Q, Wagner WM, Zheng W, Wikby A, Remarque EJ, Pawelec G (2004) Dysfunctional CMV-specific CD8(+) T cells accumulate in the elderly. Exp Gerontol 39(4):607–613.  https://doi.org/10.1016/j.exger.2003.11.016 CrossRefPubMedGoogle Scholar
  26. Passtoors WM, Beekman M, Deelen J, van der Breggen R, Maier AB, Guigas B et al (2013) Gene expression analysis of mTOR pathway: association with human longevity. Aging Cell 12(1):24–31.  https://doi.org/10.1111/acel.12015 CrossRefPubMedGoogle Scholar
  27. Passtoors WM, van den Akker EB, Deelen J, Maier AB, van der Breggen R, Jansen R et al (2015) IL7R gene expression network associates with human healthy ageing. Immun Ageing 12:21.  https://doi.org/10.1186/s12979-015-0048-6 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pawelec G (2017) Does the human immune system ever really become “senescent”? F1000Res.  https://doi.org/10.12688/f1000research.11297.1 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Pawelec G, Ferguson FG, Wikby A (2001) The SENIEUR protocol after 16 years. Mech Ageing Dev 122(2):132–134CrossRefGoogle Scholar
  30. Pawelec G, Derhovanessian E, Larbi A, Strindhall J, Wikby A (2009) Cytomegalovirus and human immunosenescence. Rev Med Virol 19(1):47–56.  https://doi.org/10.1002/rmv.598 CrossRefPubMedGoogle Scholar
  31. Plonquet A, Bastuji-Garin S, Tahmasebi F, Brisacier C, Ledudal K, Farcet J et al (2011) Immune risk phenotype is associated with nosocomial lung infections in elderly in-patients. Immun Ageing 8:8.  https://doi.org/10.1186/1742-4933-8-8 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Spyridopoulos I, Martin-Ruiz C, Hilkens C, Yadegarfar ME, Isaacs J, Jagger C et al (2016) CMV seropositivity and T-cell senescence predict increased cardiovascular mortality in octogenarians: results from the Newcastle 85+ study. Aging Cell 15(2):389–392.  https://doi.org/10.1111/acel.12430 CrossRefPubMedGoogle Scholar
  33. Stowe RP, Kozlova EV, Yetman DL, Walling DM, Goodwin JS, Glaser R (2007) Chronic herpesvirus reactivation occurs in aging. Exp Gerontol 42(6):563–570.  https://doi.org/10.1016/j.exger.2007.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Strindhall J, Nilsson BO, Lofgren S, Ernerudh J, Pawelec G, Johansson B et al (2007) No Immune Risk Profile among individuals who reach 100 years of age: findings from the Swedish NONA immune longitudinal study. Exp Gerontol 42(8):753–761.  https://doi.org/10.1016/j.exger.2007.05.001 CrossRefPubMedGoogle Scholar
  35. Thomasini RL, Pereira DS, Pereira FSM, Mateo EC, Mota TN, Guimaraes GG et al (2017) Aged-associated cytomegalovirus and Epstein-Barr virus reactivation and cytomegalovirus relationship with the frailty syndrome in older women. PLoS ONE 12(7):e0180841.  https://doi.org/10.1371/journal.pone.0180841 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Vaes B, Pasquet A, Wallemacq P, Rezzoug N, Mekouar H, Olivier PA et al (2010) The BELFRAIL (BFC80 +) study: a population-based prospective cohort study of the very elderly in Belgium. BMC Geriatr 10:39.  https://doi.org/10.1186/1471-2318-10-39 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wikby A, Johansson B, Ferguson F, Olsson J (1994) Age-related changes in immune parameters in a very old population of Swedish people: a longitudinal study. Exp Gerontol 29(5):531–541CrossRefGoogle Scholar
  38. Wikby A, Maxson P, Olsson J, Johansson B, Ferguson FG (1998) Changes in CD8 and CD4 lymphocyte subsets, T cell proliferation responses and non-survival in the very old: the Swedish longitudinal OCTO-immune study. Mech Ageing Dev 102(2–3):187–198CrossRefGoogle Scholar
  39. Wikby A, Johansson B, Olsson J, Lofgren S, Nilsson BO, Ferguson F (2002) Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp Gerontol 37(2–3):445–453CrossRefGoogle Scholar
  40. Wikby A, Ferguson F, Forsey R, Thompson J, Strindhall J, Lofgren S et al (2005) An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol A Biol Sci Med Sci 60(5):556–565CrossRefGoogle Scholar
  41. Wikby A, Nilsson BO, Forsey R, Thompson J, Strindhall J, Lofgren S et al (2006) The immune risk phenotype is associated with IL-6 in the terminal decline stage: findings from the Swedish NONA immune longitudinal study of very late life functioning. Mech Ageing Dev 127(8):695–704.  https://doi.org/10.1016/j.mad.2006.04.003 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Second Department of Internal MedicineUniversity of TübingenTübingenGermany
  2. 2.Health Sciences North Research Institute of CanadaSudburyCanada

Personalised recommendations