Biogerontology

, Volume 18, Issue 3, pp 383–396 | Cite as

Intermittent food restriction initiated late in life prolongs lifespan and retards the onset of age-related markers in the annual fish Nothobranchius guentheri

Research Article

Abstract

Two of the most studied and widely accepted conjectures on possible aging mechanisms are the oxidative stress hypothesis and the insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) pathway. Intermittent fasting (IF) is known to modulate aging and to prolong lifespan in a variety of organisms, but the mechanisms are still under debate. In this study, we first demonstrated that late-onset two consecutive days a week fasting, a form of IF, termed intermittent food restriction (IFR), exhibited a time-dependent effect, and long-term late-onset IFR extended the mean lifespan and maximum lifespan by approximately 3.5 and 3 weeks, respectively, in the annual fish Nothobranchius guentheri. We also showed that IFR reduced the accumulation of lipofuscin in the gills and the protein oxidation and lipid peroxidation levels in the muscles. Moreover, IFR was able to enhance the activities of antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase in the fish. Finally, IFR was also able to decelerate the decrease of SirT1 and Foxo3A, but accelerate the decrease of IGF-1. Collectively, our findings suggest that late-onset IFR can retard the onset of age-related markers, and prolong the lifespan of the aging fish, via a synergistic action of an anti-oxidant system and the IIS pathway. It also proposes that the combined assessment of anti-oxidant system and IIS pathway will contribute to providing a more comprehensive view of anti-aging process.

Keywords

Intermittent fasting Aging Lifespan extension Annual fish Nothobranchius 

Supplementary material

10522_2017_9699_MOESM1_ESM.docx (43 kb)
Supplementary material 1 (DOCX 42 kb)

References

  1. Aly SM (2014) Role of intermittent fasting on improving health and reducing diseases. Int J Health Sci 8:5–6Google Scholar
  2. Anson RM, Guo Z, de Cabo R, Iyun T, Rios M, Hagepanos A, Ingram DK, Lane MA, Mattson MP (2003) Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci USA 100:6216–6220. doi:10.1073/pnas.1035720100 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6:298–305. doi:10.1038/nrm1616 CrossRefPubMedGoogle Scholar
  4. Bruce-Keller AJ, Umberger G, McFall R, Mattson MP (1999) Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann Neurol 45:8–15CrossRefPubMedGoogle Scholar
  5. Chaix A, Zarrinpar A, Miu P, Panda S (2014) Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab 20:991–1005. doi:10.1016/j.cmet.2014.11.001 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106CrossRefPubMedGoogle Scholar
  7. Dance A (2016) Live fast, die young. Nature 535:453–455. doi:10.1038/535453a CrossRefPubMedGoogle Scholar
  8. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span-from yeast to humans. Science 328:321–326. doi:10.1126/science.1172539 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Genade T, Benedetti M, Terzibasi E, Roncaglia P, Valenzano DR, Cattaneo A, Cellerino A (2005) Annual fishes of the genus Nothobranchius as a model system for aging research. Aging Cell 4:223–233. doi:10.1111/j.1474-9726.2005.00165.x CrossRefPubMedGoogle Scholar
  10. Gonsalves SE, Moses AM, Razak Z, Robert F, Westwood JT (2011) Whole genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster. PLoS ONE 6:e15934. doi:10.1371/journal.pone.0015934 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Harvie MN, Pegington M, Mattson MP, Frystyk J, Dillon B, Evans G, Cuzick J, Jebb SA, Martin B, Cutler RG, Son TG, Maudsley S, Carlson OD, Egan JM, Flyvbjerg A, Howell A (2011) The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes 35:714–727. doi:10.1038/ijo.2010.171 CrossRefGoogle Scholar
  12. Hsu CY, Chiu YC (2009) Ambient temperature influences aging in an annual fish (Nothobranchius rachovii). Aging Cell 8:726–737. doi:10.1111/j.1474-9726.2009.00525.x CrossRefPubMedGoogle Scholar
  13. Hsu CY, Chiu YC, Hsu WL, Chan YP (2008) Age-related markers assayed at different developmental stages of the annual fish Nothobranchius rachovii. J Gerontol A 63:1267–1276CrossRefGoogle Scholar
  14. Jeong YJ, Sohn EH, Jung YH, Yoon WJ, Cho YM, Kim I, Lee SR, Kang SC (2016) Anti-obesity effect of Crinum asiaticum var. japonicum baker extract in high-fat diet-induced and monogenic obese mice. Biomed Pharmacother 82:35–43. doi:10.1016/j.biopha.2016.04.067 CrossRefPubMedGoogle Scholar
  15. Johnson TE (1990) Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging. Science 249:908–912CrossRefPubMedGoogle Scholar
  16. Johnson JB, Summer W, Cutler RG, Martin B, Hyun DH, Dixit VD, Pearson M, Nassar M, Telljohann R, Maudsley S, Carlson O, John S, Laub DR, Mattson MP (2007) Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic Biol Med 42:665–674. doi:10.1016/j.freeradbiomed.2006.12.005 CrossRefPubMedGoogle Scholar
  17. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14:885–890CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512. doi:10.1038/nature08980 CrossRefPubMedGoogle Scholar
  19. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464. doi:10.1038/366461a0 CrossRefPubMedGoogle Scholar
  20. Liu C, Wang X, Feng W, Li G, Su F, Zhang S (2012) Differential expression of aging biomarkers at different life stages of the annual fish Nothobranchius guentheri. Biogerontology 13:501–510. doi:10.1007/s10522-012-9395-2 CrossRefPubMedGoogle Scholar
  21. Liu T, Qi H, Ma L, Liu Z, Fu H, Zhu W, Song T, Yang B, Li G (2015) Resveratrol attenuates oxidative stress and extends life span in the annual fish Nothobranchius guentheri. Rejuvenation Res 18:225–233. doi:10.1089/rej.2014.1618 CrossRefPubMedGoogle Scholar
  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. doi:10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  23. Longo VD, Mattson MP (2014) Fasting: molecular mechanisms and clinical applications. Cell Metab 19:181–192. doi:10.1016/j.cmet.2013.12.008 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lu CY, Hsu CY (2015) Ambient temperature reduction extends lifespan via activating cellular degradation activity in an annual fish (Nothobranchius rachovii). Age 37:33. doi:10.1007/s11357-015-9775-z CrossRefPubMedPubMedCentralGoogle Scholar
  25. Manzanero S, Erion JR, Santro T, Steyn FJ, Chen C, Arumugam TV, Stranahan AM (2014) Intermittent fasting attenuates increases in neurogenesis after ischemia and reperfusion and improves recovery. J Cereb Blood Flow Metab 34:897–905. doi:10.1038/jcbfm.2014.36 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Markofsky J, Perlmutter A (1972) Age at sexual maturity and its relationship to longevity in the male annual cyprinodont fish, Nothobranchius guentheri. Exp Gerontol 7:131–135CrossRefPubMedGoogle Scholar
  27. Markofsky J, Perlmutter A (1973) Growth differences in subgroups of varying longevities in a laboratory population of the male annual cyprinodont fish, Nothobranchius guentheri (Peters). Exp Gerontol 8:65–73CrossRefPubMedGoogle Scholar
  28. Mattison JA, Vaughan KL (2016) An overview of nonhuman primates in aging research. Exp Gerontol. doi:10.1016/j.exger.2016.12.005 PubMedGoogle Scholar
  29. Mattson MP, Longo VD, Harvie M (2016) Impact of intermittent fasting on health and disease processes. Ageing Res Rev. doi:10.1016/j.arr.2016.10.005 PubMedCentralGoogle Scholar
  30. Okutan H, Ozcelik N, Yilmaz HR, Uz E (2005) Effects of caffeic acid phenethylester on lipid peroxidation and antioxidant enzymes in diabetic rat heart. Clin Biochem 38:191–196. doi:10.1016/j.clinbiochem.2004.10.003 CrossRefPubMedGoogle Scholar
  31. Park SK, Lee T, Yang HJ, Park JH, Sohn CI, Ryu S, Park DI (2016) Weight loss and waist reduction is associated with improvement in gastroesophageal disease reflux symptoms: a longitudinal study of 15295 subjects undergoing health checkups. Neurogastroenterol Motil. doi:10.1111/nmo.13009 Google Scholar
  32. Sohal RS, Agarwal S, Dubey A, Orr WC (1993) Protein oxidative damage is associated with life expectancy of houseflies. Proc Natl Acad Sci USA 90:7255–7259CrossRefPubMedPubMedCentralGoogle Scholar
  33. Spitz DR, Oberley LW (1989) An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal Biochem 179:8–18CrossRefPubMedGoogle Scholar
  34. Tatar M, Chien SA, Priest NK (2001) Negligible senescence during reproductive dormancy in Drosophila melanogaster. Am Nat 158:248–258. doi:10.1086/321320 CrossRefPubMedGoogle Scholar
  35. Terzibasi E, Lefrançois C, Domenici P, Hartmann N, Graf M, Cellerino A (2009) Effects of dietary restriction on mortality and age-related phenotypes in the short-lived fish Nothobranchius furzeri. Aging Cell 8:88–99. doi:10.1111/j.1474-9726.2009.00455.x CrossRefPubMedGoogle Scholar
  36. Ursini F, Maiorino M, Gregolin C (1985) The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta 839:62–70CrossRefPubMedGoogle Scholar
  37. Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16:296–300. doi:10.1016/j.cub.2005.12.038 CrossRefPubMedGoogle Scholar
  38. Valenzano DR, Benayoun BA, Singh PP, Zhang E, Etter PD, Hu CK, Clément-Ziza M, Willemsen D, Cui R, Harel I, Machado BE, Yee MC, Sharp SC, Bustamante CD, Beyer A, Johnson EA, Brunet A (2015) The African turquoise killifish genome provides insights into evolution and genetic architecture of lifespan. Cell 163:1539–1554. doi:10.1016/j.cell.2015.11.008 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Varady KA, Dam VT, Klempel MC, Horne M, Cruz R, Kroeger CM, Santosa S (2015) Corrigendum: effects of weight loss via high fat vs. low fat alternate day fasting diets on free fatty acid profiles. Sci Rep 5:8806. doi:10.1038/srep08806 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Müller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:620 (No abstract available) CrossRefPubMedGoogle Scholar
  41. Wang X, Chang Q, Wang Y, Su F, Zhang S (2014) Late-onset temperature reduction can retard the aging process in aged fish via a combined action of an anti-oxidant system and the insulin/insulin-like growth factor 1 signaling pathway. Rejuvenation Res 17:507–517. doi:10.1089/rej.2014.1581 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Institute of Evolution & Marine Biodiversity and Department of Marine BiologyOcean University of ChinaQingdaoChina
  2. 2.Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.Institute of Chemical EngineeringQingdao University of Science and TechnologyQingdaoChina

Personalised recommendations