, Volume 18, Issue 3, pp 321–332 | Cite as

Molecular connections of obesity and aging: a focus on adipose protein 53 and retinoblastoma protein

  • Dinh-Toi Chu
  • Yang Tao
Review Article


Obesity is an induced health problem that human beings have been facing with non-optimal treatment so far. Humans are on average getting fatter with age, and obesity and aging interact each other to shorten lifetime and decrease life quality. Obesity also causes several aging related-disorders such as cancer, strokes, cardiovascular disease, high blood pressure and type 2 diabetes. So, the molecular connections between aging and obesity are promising targets for bio-medical researches and innovative therapies of many health problems. In this review, we discuss the findings of adipose p53 and Rb—two central molecular linkages between aging and obesity—on lipid metabolism and obesity.


p53 and Rb on obesity p53 and Rb on adipogenesis Aging and obesity 



We would like to thank our colleagues especially Dr. Lien Nguyen (University of Florida, Gainesville, USA) for critical reading and helpful comments to improve the revised manuscript. We acknowledge all researchers who have contributed to our understandings of adipose p53 and Rb on fat metabolism and obesity. We apologize to other scientists for not directly citing their works that have contributed to the field because of space limitations. The DTC is a current postdoc under the SCIENTIA FELLOWS programme co-funded by Faculty of Medicine, University of Oslo and the EU Seventh Framework Programme (FP7) under Marie S. Curie scheme–People: Cofunding of Regional, National and International Programmes (COFUND), Grant Agreement No. 609020.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interests



  1. Ahima RS (2009) Connecting obesity, aging and diabetes. Nat Med 15:996–997CrossRefPubMedGoogle Scholar
  2. Alessio N et al (2013) Silencing of RB1 but not of RB2/P130 induces cellular senescence and impairs the differentiation potential of human mesenchymal stem cells. Cell Mol Life Sci 70:1637–1651. doi: 10.1007/s00018-012-1224-x CrossRefPubMedGoogle Scholar
  3. Andrusiak MG, Vandenbosch R, Park DS, Slack RS (2012) The retinoblastoma protein is essential for survival of postmitotic neurons. J Neurosci 32:14809–14814. doi: 10.1523/jneurosci.1912-12.2012 CrossRefPubMedGoogle Scholar
  4. Anson RM et al (2003) Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci USA 100:6216–6220. doi: 10.1073/pnas.1035720100 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Armata HL, Golebiowski D, Jung DY, Ko HJ, Kim JK, Sluss HK (2010) Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis. Mol Cell Biol 30:5787–5794. doi: 10.1128/mcb.00347-10 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Armesilla-Diaz A, Elvira G, Silva A (2009) p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells. Exp Cell Res 315:3598–3610. doi: 10.1016/j.yexcr.2009.08.004 CrossRefPubMedGoogle Scholar
  7. Barzilai N, Gupta G (1999) Revisiting the role of fat mass in the life extension induced by caloric restriction. J Gerontol Ser A Biol Sci Med Sci 54:B89–B96. doi: 10.1093/gerona/54.3.B89 CrossRefGoogle Scholar
  8. Berryman DE, Christiansen JS, Johannsson G, Thorner MO, Kopchick JJ (2008) Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Horm IGF Res 18:455–471. doi: 10.1016/j.ghir.2008.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Blüher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299:572–574. doi: 10.1126/science.1078223 CrossRefPubMedGoogle Scholar
  10. Bogazzi F et al (2013) Growth hormone is necessary for the p53-mediated, obesity-induced insulin resistance in male C57BL/6 J × CBA mice. Endocrinology 154:4226–4236. doi: 10.1210/en.2013-1220 CrossRefPubMedGoogle Scholar
  11. Burkhart DL, Sage J (2008) Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 8:671–682CrossRefPubMedGoogle Scholar
  12. Calo E, Quintero-Estades JA, Danielian PS, Nedelcu S, Berman SD, Lees JA (2010) Rb regulates fate choice and lineage commitment in vivo. Nature 466:1110–1114CrossRefPubMedPubMedCentralGoogle Scholar
  13. Campisi J (2003) Cancer and ageing: rival demons? Nat Rev Cancer 3:339–349CrossRefPubMedGoogle Scholar
  14. Campisi J, di Fagagna FDA (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740CrossRefPubMedGoogle Scholar
  15. Capasso S et al (2014) Silencing of RB1 and RB2/P130 during adipogenesis of bone marrow stromal cells results in dysregulated differentiation. Cell Cycle 13:482–490. doi: 10.4161/cc.27275 CrossRefPubMedGoogle Scholar
  16. Carlos AR et al (2013) ARF triggers senescence in Brca2-deficient cells by altering the spectrum of p53 transcriptional targets. Nat Commun. doi: 10.1038/ncomms3697 PubMedGoogle Scholar
  17. Chen PL, Riley DJ, Chen Y, Lee WH (1996) Retinoblastoma protein positively regulates terminal adipocyte differentiation through direct interaction with C/EBPs. Genes Dev 10:2794–2804. doi: 10.1101/gad.10.21.2794 CrossRefPubMedGoogle Scholar
  18. Chu D-T, Tao Y (2017) Human thermogenic adipocytes: a reflection on types of adipocyte, developmental origin, and potential application. J Physiol Biochem 73:1–4. doi: 10.1007/s13105-016-0536-y CrossRefPubMedGoogle Scholar
  19. Chu D-T, Malinowska E, Gawronska-Kozak B, Kozak LP (2014) Expression of adipocyte biomarkers in a primary cell culture models reflects preweaning adipobiology. J Biol Chem 289:18478–18488. doi: 10.1074/jbc.M114.555821 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chu D-T, Malinowska E, Jura M, Kozak LP (2017a) C57BL/6 J mice as a polygenic developmental model of diet-induced obesity Physiological Reports, In pressGoogle Scholar
  21. Chu D-T, Tao Y, Taskén K (2017b) OPA1 in lipid metabolism: function of OPA1 in lipolysis and thermogenesis of adipocytes. Horm Metab Res doi: 10 doi:, In pressGoogle Scholar
  22. Chu-Dinh T, Chu DT (2014) 4-1BB and the epigenetic regulations of this molecule medical. Epigenetics 2:80–85CrossRefGoogle Scholar
  23. Classon M, Kennedy BK, Mulloy R, Harlow E (2000) Opposing roles of pRB and p107 in adipocyte differentiation. Proc Natl Acad Sci 97:10826–10831. doi: 10.1073/pnas.190343597 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dali-Youcef N et al (2007) Adipose tissue-specific inactivation of the retinoblastoma protein protects against diabesity because of increased energy expenditure. Proc Natl Acad Sci 104:10703–10708. doi: 10.1073/pnas.0611568104 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Das SK et al (2017) Body-composition changes in the comprehensive assessment of long-term effects of reducing intake of energy (CALERIE)-2 study: a 2-y randomized controlled trial of calorie restriction in nonobese humans. Am J Clin Nutr. doi: 10.3945/ajcn.116.137232 Google Scholar
  26. Duan W, Guo Z, Jiang H, Ware M, Li X-J, Mattson MP (2003) Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc Natl Acad Sci USA 100:2911–2916. doi: 10.1073/pnas.0536856100 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fontana L, Hu FB (2014) Optimal body weight for health and longevity: bridging basic, clinical, and population research. Aging Cell 13:391–400. doi: 10.1111/acel.12207 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Galderisi U, Cipollaro M, Giordano A (2006) The retinoblastoma gene is involved in multiple aspects of stem cell biology. Oncogene 25:5250–5256CrossRefPubMedGoogle Scholar
  29. Gopalan V et al (2016) Effect of exercise and calorie restriction on tissue acylcarnitines tissue desaturase indices, and fat accumulation in diet-induced obese rats. Sci Rep 6:26445. doi: 10.1038/srep26445 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hallenborg P, Feddersen S, Madsen L, Kristiansen K (2009) The tumor suppressors pRB and p53 as regulators of adipocyte differentiation and function. Expert Opin Ther Targets 13:235–246. doi: 10.1517/14712590802680141 CrossRefPubMedGoogle Scholar
  31. Hallenborg P et al (2016) p53 regulates expression of uncoupling protein 1 through binding and repression of PPARγ coactivator-1α. Am J Physiol—Endocrinol Metab 310:E116–E128. doi: 10.1152/ajpendo.00119.2015 PubMedGoogle Scholar
  32. Hansen JB et al (2004) Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation. Proc Natl Acad Sci 101:4112–4117. doi: 10.1073/pnas.0301964101 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Heilbronn LK et al (2006) Effect of 6-mo. calorie restriction on biomarkers of longevity, metabolic adaptation and oxidative stress in overweight subjects. JAMA J Am Med Assoc 295:1539–1548. doi: 10.1001/jama.295.13.1539 CrossRefGoogle Scholar
  34. Holloszy JO, Fontana L (2007) Caloric restriction in humans experimental gerontology 42:709–712. doi: 10.1016/j.exger.2007.03.009 CrossRefPubMedGoogle Scholar
  35. Homayounfar R, Jeddi-Tehrani M, Cheraghpour M, Ghorbani A, Zand H (2014) Relationship of p53 accumulation in peripheral tissues of high-fat diet-induced obese rats with decrease in metabolic and oncogenic signaling of insulin. Gen Comp Endocrinol. doi: 10.1016/j.ygcen.2014.06.029 PubMedGoogle Scholar
  36. Horvath S et al (2014) Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci 111:15538–15543. doi: 10.1073/pnas.1412759111 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hu X et al (2015) Molecular cloning, expression pattern analysis of porcine Rb1 gene and its regulatory roles during primary dedifferentiated fat cells adipogenic differentiation. Gen Comp Endocrinol 214:77–86. doi: 10.1016/j.ygcen.2015.01.016 CrossRefPubMedGoogle Scholar
  38. Huang Q et al (2014) Role of p53 in preadipocyte differentiation. Cell Biol Int 38:1384–1393. doi: 10.1002/cbin.10334 CrossRefPubMedGoogle Scholar
  39. Jura M, Jarosławska J, Chu DT, Kozak LP (2016) Mest and Sfrp5 are biomarkers for healthy adipose tissue. Biochimie 124:124–133. doi: 10.1016/j.biochi.2015.05.006 CrossRefPubMedGoogle Scholar
  40. King V, Norman J, Seckl J, Drake A (2014) Post-weaning diet determines metabolic risk in mice exposed to overnutrition in early life. Reprod Biol Endocrinol 12:73CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kitzman DW, Brubaker P, Morgan T et al (2016) Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 315:36–46. doi: 10.1001/jama.2015.17346 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kozak LP, Newman S, Chao P-M, Mendoza T, Koza RA (2010) The early nutritional environment of mice determines the capacity for adipose tissue expansion by modulating genes of caveolae structure. PLoS ONE 5:e11015. doi: 10.1371/journal.pone.0011015 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kung C-P et al (2016) The P72R polymorphism of p53 predisposes to obesity and metabolic dysfunction. Cell Rep 14:2413–2425. doi: 10.1016/j.celrep.2016.02.037 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lamming DW et al (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335:1638–1643. doi: 10.1126/science.1215135 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lane MA, Ingram DK, Ball SS, Roth GS (1997) Dehydroepiandrosterone sulfate: a biomarker of primate aging slowed by calorie restriction. J Clin Endocrinol Metab 82:2093–2096. doi: 10.1210/jcem.82.7.4038 CrossRefPubMedGoogle Scholar
  46. Lizcano F, Vargas D (2016) Biology of beige adipocyte and possible therapy for type 2 diabetes and obesity. Int J Endocrinol 2016:10. doi: 10.1155/2016/9542061 CrossRefGoogle Scholar
  47. Lu Z et al (2013) pRb is an obesity suppressor in hypothalamus and high-fat diet inhibits pRb in this location. EMBO J 32:844–857. doi: 10.1038/emboj.2013.25 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Martin-Montalvo A et al (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4:2192. doi: 10.1038/ncomms3192 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Masoro EJ (2006) Caloric restriction and aging: controversial issues. J Gerontol A Biol Sci Med Sci 61:14–19CrossRefPubMedGoogle Scholar
  50. Mattison JA et al (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489:318–321CrossRefPubMedGoogle Scholar
  51. Mattison JA et al (2017) Caloric restriction improves health and survival of rhesus monkeys. Nat Commun 8:14063. doi: 10.1038/ncomms14063 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mercader J et al (2009) Haploinsufficiency of the retinoblastoma protein gene reduces diet-induced obesity, insulin resistance, and hepatosteatosis in mice. Am J Physiol Endocrinol Metab 297(1):E184–E193. doi: 10.1152/ajpendo.00163.2009 CrossRefPubMedGoogle Scholar
  53. Miard S, Picard F (2008) Obesity and aging have divergent genomic fingerprints. Int J Obes 32:1873–1874. doi: 10.1038/ijo.2008.214 CrossRefGoogle Scholar
  54. Ortega FJ et al (2014) Inflammation and insulin resistance exert dual effects on adipose tissue tumor protein 53 expression. Int J Obes 38:8. doi: 10.1038/ijo.2013.163 CrossRefGoogle Scholar
  55. Minamino T et al. (2009) A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 15:1082–1087 doi:
  56. Molchadsky A et al (2008) p53 Plays a role in mesenchymal differentiation programs, in a cell fate dependent manner. PLoS ONE 3:e3707. doi: 10.1371/journal.pone.0003707 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Molchadsky A, Rivlin N, Brosh R, Rotter V, Sarig R (2010) p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis 31:1501–1508. doi: 10.1093/carcin/bgq101 CrossRefPubMedGoogle Scholar
  58. Molchadsky A et al (2013) p53 is required for brown adipogenic differentiation and has a protective role against diet-induced obesity. Cell Death Differ 20:774–783. doi: 10.1038/cdd.2013.9 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Moreno-Navarrete JM et al (2013) Decreased RB1 mRNA, protein, and activity reflect obesity-induced altered adipogenic capacity in human adipose tissue. Diabetes 62:1923–1931. doi: 10.2337/db12-0977 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Mott JW, Wang J, Thornton JC, Allison DB, Heymsfield SB, Pierson RN (1999) Relation between body fat and age in 4 ethnic groups. Am J Clin Nutr 69:1007–1013PubMedGoogle Scholar
  61. Muzumdar R et al (2008) Visceral adipose tissue modulates mammalian longevity. Aging Cell 7:438–440. doi: 10.1111/j.1474-9726.2008.00391.x CrossRefPubMedPubMedCentralGoogle Scholar
  62. Petrov PD, Ribot J, Palou A, Luisa Bonet M (2015) Improved metabolic regulation is associated with retinoblastoma protein gene haploinsufficiency in mice. Am J Physiol—Endocrinol Metab 308:E172–E183. doi: 10.1152/ajpendo.00308.2014 CrossRefPubMedGoogle Scholar
  63. Petrov PD, Palou A, Bonet ML, Ribot J (2016a) Cell-autonomous brown-like adipogenesis of preadipocytes from retinoblastoma haploinsufficient mice. J Cell Physiol. doi: 10.1002/jcp.25299 Google Scholar
  64. Petrov PD, Ribot J, López-Mejía IC, Fajas L, Palou A, Bonet ML (2016b) Retinoblastoma protein knockdown favors oxidative metabolism and glucose and fatty acid disposal in muscle cells. J Cell Physiol 231:708–718. doi: 10.1002/jcp.25121 CrossRefPubMedGoogle Scholar
  65. Polager S, Ginsberg D (2009) p53 and E2f: partners in life and death. Nat Rev Cancer 9:738–748CrossRefPubMedGoogle Scholar
  66. Power ML, Schulkin J (2008) Sex differences in fat storage, fat metabolism, and the health risks from obesity: possible evolutionary origins. Br J Nutr 99:931–940. doi: 10.1017/S0007114507853347 CrossRefPubMedGoogle Scholar
  67. Raffaghello L, Safdie F, Bianchi G, Dorff T, Fontana L, Longo VD (2010) Fasting and differential chemotherapy protection in patients. Cell Cycle 9:4474–4476. doi: 10.4161/cc.9.22.13954 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Ravussin E et al (2015) A 2-year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity. J Gerontol 70:1097–1104. doi: 10.1093/gerona/glv057 CrossRefGoogle Scholar
  69. Ronan L, Alexander-Bloch AF, Wagstyl K, Farooqi S, Brayne C, Tyler LK, Fletcher PC (2016) Obesity associated with increased brain age from midlife. Neurobiol Aging 47:63–70. doi: 10.1016/j.neurobiolaging.2016.07.010 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rufini A, Tucci P, Celardo I, Melino G (2013) Senescence and aging: the critical roles of p53. Oncogene 32:5129–5143. doi: 10.1038/onc.2012.640 CrossRefPubMedGoogle Scholar
  71. Selman C et al (2008) Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J 22:807–818. doi: 10.1096/fj.07-9261com CrossRefPubMedGoogle Scholar
  72. Shimizu I et al (2012) p53-induced adipose tissue inflammation is critically involved in the development of insulin resistance in heart failure. Cell Metab 15:51–64. doi: 10.1016/j.cmet.2011.12.006 CrossRefPubMedGoogle Scholar
  73. Ström K et al (2008) Attainment of brown adipocyte features in white adipocytes of hormone-sensitive lipase null mice. PLoS ONE 3:e1793. doi: 10.1371/journal.pone.0001793 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Tchkonia T et al (2010) Fat tissue, aging, and cellular senescence. Aging Cell 9:667–684. doi: 10.1111/j.1474-9726.2010.00608.x CrossRefPubMedPubMedCentralGoogle Scholar
  75. Um SH et al (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431:200–205CrossRefPubMedGoogle Scholar
  76. Verdery RB, Ingram DK, Roth GS, Lane MA (1997) Caloric restriction increases HDL2 levels in rhesus monkeys (Macaca mulatta). Am J Physiol—Endocrinol Metab 273:E714–E719Google Scholar
  77. Vergoni B et al (2016) DNA damage and the activation of the p53 pathway mediate alterations in metabolic and secretory functions of adipocytes. Diabetes 65:3062–3074. doi: 10.2337/db16-0014 CrossRefPubMedGoogle Scholar
  78. Yahagi N et al (2003) p53 activation in adipocytes of obese mice. J Biol Chem 278:25395–25400. doi: 10.1074/jbc.M302364200 CrossRefPubMedGoogle Scholar
  79. Yap DB, Hsieh JK, Chan FS, Lu X (1999) mdm2: a bridge over the two tumour suppressors, p53 and Rb. Oncogene 18:7681–7689. doi: 10.1038/sj.onc.1202954 CrossRefPubMedGoogle Scholar
  80. Yokoyama M et al (2014) Inhibition of endothelial p53 improves metabolic abnormalities related to dietary obesity. Cell Rep 7:1691–1703. doi: 10.1016/j.celrep.2014.04.046 CrossRefPubMedGoogle Scholar
  81. Zand H, Homayounfar R, Cheraghpour M, Jeddi-Tehrani M, Ghorbani A, Pourvali K, Soltani SR (2016) Obesity-induced p53 activation in insulin-dependent and independent tissues is inhibited by beta-adrenergic agonist in diet-induced obese rats. Life Sci 147:103–109. doi: 10.1016/j.lfs.2016.01.040 CrossRefPubMedGoogle Scholar
  82. Zhu Y, Prives C (2009) p53 and metabolism: the GAMT connection. Mol Cell 36:351–352. doi: 10.1016/j.molcel.2009.10.026 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Institute for Research and DevelopmentDuy Tan UniversityDanangVietnam
  2. 2.Faculty of BiologyHanoi National University of EducationHanoiVietnam
  3. 3.Centre for Molecular Medicine Norway (NCMM), Nordic EMBL PartnershipUniversity of Oslo and Oslo University HospitalOsloNorway
  4. 4.College of Food Science and TechnologyNanjing Agricultural UniversityNanjing 210095China

Personalised recommendations