Advertisement

Biogerontology

, Volume 18, Issue 4, pp 693–709 | Cite as

Keeping up with the Red Queen: the pace of aging as an adaptation

  • Peter LenartEmail author
  • Julie Bienertová-Vašků
Opinion Article

Abstract

For decades, a vast majority of biogerontologists assumed that aging is not and cannot be an adaptation. In recent years, however, several authors opposed this predominant view and repeatedly suggested that not only is aging an adaptation but that it is the result of a specific aging program. This issue almost instantaneously became somewhat controversial and many important authors produced substantial works refuting the notion of the aging program. In this article we review the current state of the debate and list the most important arguments proposed by both sides. Furthermore, although classical interpretations of the evolution of aging are in sharp contrast with the idea of programmed aging, we suggest that the truth might in fact very well lie somewhere in between. We also propose our own interpretation which states that although aging is in essence inevitable and results from damage accumulation rather than from a specific program, the actual rate of aging in nature may still be adaptive to some extent.

Keywords

Aging Evolution Programmed aging Red Queen Pace of aging Aging as an adaptation 

Notes

Acknowledgements

We would like to thank the CETOCOEN PLUS project. This study was also supported by the Rector’s program (MUNI/C/1066/2015) of Masaryk University. The RECETOX research infrastructure was supported by the Ministry of Education, Youth and Sports of the Czech Republic (LM2011028).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Alexander RD, Bargia G (1978) Group selection, altruism, and the levels of organization of life. Annu Rev Ecol Syst 9:449–474. doi: 10.1146/annurev.es.09.110178.002313 CrossRefGoogle Scholar
  2. Aoki I (1991) Entropy principle for human development, growth and aging. J Theor Biol 150:215–223PubMedCrossRefGoogle Scholar
  3. Archer CR, Duffy E, Hosken DJ et al (2015) Sex-specific effects of natural and sexual selection on the evolution of life span and ageing in Drosophila simulans. Funct Ecol 29:562–569. doi: 10.1111/1365-2435.12369 CrossRefGoogle Scholar
  4. Austad SN (2004) Is aging programed? Aging Cell 3:249–251. doi: 10.1111/j.1474-9728.2004.00112.x PubMedCrossRefGoogle Scholar
  5. Baudisch A (2005) Hamilton’s indicators of the force of selection. Proc Natl Acad Sci USA 102:8263–8268. doi: 10.1073/pnas.0502155102 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Beaulieu M, Geiger RE, Reim E et al (2015) Reproduction alters oxidative status when it is traded-off against longevity. Evolution 69:1786–1796. doi: 10.1111/evo.12697 PubMedCrossRefGoogle Scholar
  7. Blagosklonny MV (2007) Paradoxes of aging. Cell Cycle 6:2997–3003. doi: 10.4161/cc.6.24.5124 PubMedCrossRefGoogle Scholar
  8. Blagosklonny MV (2010) Revisiting the antagonistic pleiotropy theory of aging: TOR-driven program and quasi-program. Cell Cycle 9:3171–3176. doi: 10.4161/cc.9.16.13120 CrossRefGoogle Scholar
  9. Blagosklonny MV (2011) Hormesis does not make sense except in the light of TOR-driven aging. Aging 3:1051–1062PubMedPubMedCentralCrossRefGoogle Scholar
  10. Blagosklonny MV (2012) Answering the ultimate question “What is the proximal cause of aging?”. Aging 4:861–877PubMedPubMedCentralCrossRefGoogle Scholar
  11. Blagosklonny MV (2013) Aging is not programmed. Cell Cycle 12:3736–3742. doi: 10.4161/cc.27188 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Boehm A-M, Khalturin K, Anton-Erxleben F et al (2012) FoxO is a critical regulator of stem cell maintenance in immortal Hydra. Proc Natl Acad Sci 109:19697–19702. doi: 10.1073/pnas.1209714109 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bonduriansky R, Brassil CE (2002) Senescence: rapid and costly ageing in wild male flies. Nature 420:377. doi: 10.1038/420377a PubMedCrossRefGoogle Scholar
  14. Bowles JT (1998) The evolution of aging: a new approach to an old problem of biology. Med Hypotheses 51:179–221. doi: 10.1016/S0306-9877(98)90079-2 PubMedCrossRefGoogle Scholar
  15. Bredesen DE (2004) The non-existent aging program: how does it work? Aging Cell 3:255–259. doi: 10.1111/j.1474-9728.2004.00121.x PubMedCrossRefGoogle Scholar
  16. Brutovská E, Sámelová A, Dušička J, Mičieta K (2013) Ageing of trees: application of general ageing theories. Ageing Res Rev 12:855–866. doi: 10.1016/j.arr.2013.07.001 PubMedCrossRefGoogle Scholar
  17. Bulterijs S, Hull RS, Björk VCE, Roy AG (2015) It is time to classify biological aging as a disease. Front Genet. doi: 10.3389/fgene.2015.00205 PubMedPubMedCentralGoogle Scholar
  18. Bunkar N, Pathak N, Lohiya NK, Mishra PK (2016) Epigenetics: a key paradigm in reproductive health. Clin Exp Reprod Med 43:59–81. doi: 10.5653/cerm.2016.43.2.59 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Busuttil RA, Garcia AM, Cabrera C et al (2005) Organ-specific increase in mutation accumulation and apoptosis rate in CuZn-superoxide dismutase-deficient mice. Cancer Res 65:11271–11275. doi: 10.1158/0008-5472.CAN-05-2980 PubMedCrossRefGoogle Scholar
  20. Carnes BA (2011) What is lifespan regulation and why does it exist? Biogerontology 12:367–374. doi: 10.1007/s10522-011-9338-3 PubMedCrossRefGoogle Scholar
  21. Carnes BA, Witten TM (2014) How long must humans live? J Gerontol A 69:965–970. doi: 10.1093/gerona/glt164 CrossRefGoogle Scholar
  22. Conboy IM, Conboy MJ, Wagers AJ et al (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764. doi: 10.1038/nature03260 PubMedCrossRefGoogle Scholar
  23. da Costa JP, Vitorino R, Silva GM et al (2016) A synopsis on aging—theories, mechanisms and future prospects. Ageing Res Rev 29:90–112. doi: 10.1016/j.arr.2016.06.005 PubMedCrossRefGoogle Scholar
  24. Dabin J, Fortuny A, Polo SE (2016) Epigenome maintenance in response to DNA damage. Mol Cell 62:712–727. doi: 10.1016/j.molcel.2016.04.006 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Daxinger L, Whitelaw E (2010) Transgenerational epigenetic inheritance: more questions than answers. Genome Res 20:1623–1628. doi: 10.1101/gr.106138.110 PubMedPubMedCentralCrossRefGoogle Scholar
  26. de Grey ADNJ (2015) Do we have genes that exist to hasten aging? New data, new arguments, but the answer is still no. Curr Aging Sci 8:24–33PubMedCrossRefGoogle Scholar
  27. de Magalhães JP (2012) Programmatic features of aging originating in development: aging mechanisms beyond molecular damage? FASEB J 26:4821–4826. doi: 10.1096/fj.12-210872 PubMedPubMedCentralCrossRefGoogle Scholar
  28. de Magalhães JP, Costa J, Church GM (2007) An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J Gerontol A 62:149–160CrossRefGoogle Scholar
  29. Fabrizio P, Battistella L, Vardavas R et al (2004) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol 166:1055–1067. doi: 10.1083/jcb.200404002 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Finch CE (2009) Update on slow aging and negligible senescence—a mini-review. Gerontology 55:307–313. doi: 10.1159/000215589 PubMedCrossRefGoogle Scholar
  31. Finch CE, Kirkwood T (2000) Chance, development, and aging, 1st edn. Oxford University Press, New YorkGoogle Scholar
  32. François P, Siggia ED (2010) Predicting embryonic patterning using mutual entropy fitness and in silico evolution. Dev Camb Engl 137:2385–2395. doi: 10.1242/dev.048033 Google Scholar
  33. Gavrilov LA, Gavrilova NS (2002) Evolutionary theories of aging and longevity. Sci World J 2:339–356. doi: 10.1100/tsw.2002.96 CrossRefGoogle Scholar
  34. Gavrilova NS, Gavrilov LA, Severin FF, Skulachev VP (2012) Testing predictions of the programmed and stochastic theories of aging: comparison of variation in age at death, menopause, and sexual maturation. Biochem Biokhimiia 77:754–760. doi: 10.1134/S0006297912070085 CrossRefGoogle Scholar
  35. Goldsmith TC (2013) Arguments against non-programmed aging theories. Biochemistry 78:971–978. doi: 10.1134/S0006297913090022 PubMedGoogle Scholar
  36. Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255–262. doi: 10.1038/35041700 PubMedCrossRefGoogle Scholar
  37. Guerin JC (2004) Emerging area of aging research: long-lived animals with “Negligible senescence”. Ann N Y Acad Sci 1019:518–520. doi: 10.1196/annals.1297.096 PubMedCrossRefGoogle Scholar
  38. Gurven M, Costa M, Trumble Ben et al (2016) Health costs of reproduction are minimal despite high fertility, mortality and subsistence lifestyle. Sci Rep. doi: 10.1038/srep30056 Google Scholar
  39. Hamilton WD (1966) The moulding of senescence by natural selection. J Theor Biol 12:12–45. doi: 10.1016/0022-5193(66)90184-6 PubMedCrossRefGoogle Scholar
  40. Hayflick L (2007) Entropy explains aging, genetic determinism explains longevity, and undefined terminology explains misunderstanding both. PLoS Genet. doi: 10.1371/journal.pgen.0030220 PubMedPubMedCentralGoogle Scholar
  41. Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:95–109. doi: 10.1016/j.cell.2014.02.045 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Herskind AM, McGue M, Holm NV et al (1996) The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum Genet 97:319–323PubMedCrossRefGoogle Scholar
  43. Holliday R (2004) Aging: the reality the multiple and irreversible causes of aging. J Gerontol A 59:B568–B572. doi: 10.1093/gerona/59.6.B568 CrossRefGoogle Scholar
  44. Hsin H, Kenyon C (1999) Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399:362–366. doi: 10.1038/20694 PubMedCrossRefGoogle Scholar
  45. Jones OR, Scheuerlein A, Salguero-Gómez R et al (2014) Diversity of ageing across the tree of life. Nature 505:169–173. doi: 10.1038/nature12789 PubMedCrossRefGoogle Scholar
  46. Kaya A, Lobanov AV, Gladyshev VN (2015) Evidence that mutation accumulation does not cause aging in Saccharomyces cerevisiae. Aging Cell 14:366–371. doi: 10.1111/acel.12290 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kenyon C (2010a) A pathway that links reproductive status to lifespan in Caenorhabditis elegans. Ann N Y Acad Sci 1204:156–162. doi: 10.1111/j.1749-6632.2010.05640.x PubMedCrossRefGoogle Scholar
  48. Kenyon CJ (2010b) The genetics of ageing. Nature 464:504–512. doi: 10.1038/nature08980 PubMedCrossRefGoogle Scholar
  49. Khazaeli AA, Curtsinger JW (2013) Pleiotropy and life history evolution in drosophila melanogaster: uncoupling life span and early fecundity. J Gerontol A 68:546–553. doi: 10.1093/gerona/gls226 CrossRefGoogle Scholar
  50. Kirkwood TB (1977) Evolution of ageing. Nature 270:301–304PubMedCrossRefGoogle Scholar
  51. Kirkwood TBL (2005) Understanding the odd science of aging. Cell 120:437–447. doi: 10.1016/j.cell.2005.01.027 PubMedCrossRefGoogle Scholar
  52. Kirkwood TBL, Austad SN (2000) Why do we age? Nature 408:233–238. doi: 10.1038/35041682 PubMedCrossRefGoogle Scholar
  53. Kirkwood TBL, Holliday R (1979) The evolution of ageing and longevity. Proc R Soc Lond B Biol Sci 205:531–546. doi: 10.1098/rspb.1979.0083 PubMedCrossRefGoogle Scholar
  54. Kirkwood TBL, Melov S (2011) On the programmed/non-programmed nature of ageing within the life history. Curr Biol 21:R701–R707. doi: 10.1016/j.cub.2011.07.020 PubMedCrossRefGoogle Scholar
  55. Kowald A, Kirkwood TBL (2015) Evolutionary significance of ageing in the wild. Exp Gerontol 71:89–94. doi: 10.1016/j.exger.2015.08.006 PubMedCrossRefGoogle Scholar
  56. Kowald A, Kirkwood TBL (2016) Can aging be programmed? A critical literature review. Aging Cell 15:986–998. doi: 10.1111/acel.12510 CrossRefGoogle Scholar
  57. Lenart P, Bienertová-Vašků J (2016) Double strand breaks may be a missing link between entropy and aging. Mech Ageing Dev 157:1–6. doi: 10.1016/j.mad.2016.06.002 PubMedCrossRefGoogle Scholar
  58. Lenart P, Krejci L (2016) DNA, the central molecule of aging. Mutat Res Mol Mech Mutagen 786:1–7. doi: 10.1016/j.mrfmmm.2016.01.007 CrossRefGoogle Scholar
  59. Leroi AM, Chen WR, Rose MR (1994) Long-term laboratory evolution of a genetic life-history trade-off in drosophila melanogaster. 2. Stability of genetic correlations. Evolution 48:1258–1268. doi: 10.2307/2410383 PubMedGoogle Scholar
  60. Leroi AM, Bartke A, Benedictis GD et al (2005) What evidence is there for the existence of individual genes with antagonistic pleiotropic effects? Mech Ageing Dev 126:421–429. doi: 10.1016/j.mad.2004.07.012 PubMedCrossRefGoogle Scholar
  61. Libertini G (1988) An adaptive theory of increasing mortality with increasing chronological age in populations in the wild. J Theor Biol 132:145–162PubMedCrossRefGoogle Scholar
  62. Ljungquist B, Berg S, Lanke J et al (1998) The effect of genetic factors for longevity: a comparison of identical and fraternal twins in the swedish twin registry. J Gerontol A 53A:M441–M446. doi: 10.1093/gerona/53A.6.M441 CrossRefGoogle Scholar
  63. Longo VD, Mitteldorf J, Skulachev VP (2005) Programmed and altruistic ageing. Nat Rev Genet 6:866–872. doi: 10.1038/nrg1706 PubMedCrossRefGoogle Scholar
  64. López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217. doi: 10.1016/j.cell.2013.05.039 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lui JC, Chen W, Barnes KM, Baron J (2010) Changes in gene expression associated with aging commonly originate during juvenile growth. Mech Ageing Dev 131:641–649. doi: 10.1016/j.mad.2010.08.010 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Martínez DE (1998) Mortality patterns suggest lack of senescence in hydra. Exp Gerontol 33:217–225PubMedCrossRefGoogle Scholar
  67. Martins ACR (2011) Change and aging senescence as an adaptation. PLoS ONE 6:e24328. doi: 10.1371/journal.pone.0024328 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mason JB, Cargill SL, Anderson GB, Carey JR (2009) Transplantation of young ovaries to old mice increased life span in transplant recipients. J Gerontol A 64A:1207–1211. doi: 10.1093/gerona/glp134 CrossRefGoogle Scholar
  69. Medawar PB (1952) An unsolved problem of biology: an inaugural lecture delivered at university college, London, 6 december, 1951. H.K Lewis and Company, LondonGoogle Scholar
  70. Medvedev ZA (1990) An attempt at a rational classification of theories of ageing. Biol Rev 65:375–398. doi: 10.1111/j.1469-185X.1990.tb01428.x PubMedCrossRefGoogle Scholar
  71. Melzer S, Lens F, Gennen J et al (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 40:1489–1492. doi: 10.1038/ng.253 PubMedCrossRefGoogle Scholar
  72. Milewski LAK (2010) The evolution of ageing. Biosci Horiz 3:77–84. doi: 10.1093/biohorizons/hzq001 CrossRefGoogle Scholar
  73. Mitteldorf J (2004) Ageing selected for its own sake. Evol Ecol Res 6:937–953Google Scholar
  74. Mitteldorf J (2006) Chaotic population dynamics and the evolution of ageing. Evol Ecol Res 8:561–574Google Scholar
  75. Mitteldorf JJ (2012) Adaptive aging in the context of evolutionary theory. Biochem Biokhimiia 77:716–725. doi: 10.1134/S0006297912070036 CrossRefGoogle Scholar
  76. Mitteldorf J, Goodnight C (2012) Post-reproductive life span and demographic stability. Oikos 121:1370–1378. doi: 10.1111/j.1600-0706.2012.19995.x CrossRefGoogle Scholar
  77. Mitteldorf J, Martins ACR (2014) Programmed life span in the context of evolvability. Am Nat 184:289–302. doi: 10.1086/677387 PubMedCrossRefGoogle Scholar
  78. Mitteldorf J, Pepper J (2009) Senescence as an adaptation to limit the spread of disease. J Theor Biol 260:186–195. doi: 10.1016/j.jtbi.2009.05.013 PubMedCrossRefGoogle Scholar
  79. Morran LT, Schmidt OG, Gelarden IA et al (2011) Running with the Red Queen: host-parasite coevolution selects for biparental sex. Science 333:216–218. doi: 10.1126/science.1206360 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Morris BJ, Willcox DC, Donlon TA, Willcox BJ (2015) FOXO3: a major gene for human longevity—a mini-review. Gerontology 61:515–525. doi: 10.1159/000375235 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Moskalev AA, Shaposhnikov MV, Plyusnina EN et al (2013) The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 12:661–684. doi: 10.1016/j.arr.2012.02.001 PubMedCrossRefGoogle Scholar
  82. Munné-Bosch S (2015) Senescence: is it universal or not? Trends Plant Sci 20:713–720. doi: 10.1016/j.tplants.2015.07.009 PubMedCrossRefGoogle Scholar
  83. Narayanan L, Fritzell JA, Baker SM et al (1997) Elevated levels of mutation in multiple tissues of mice deficient in the DNA mismatch repair gene Pms2. Proc Natl Acad Sci USA 94:3122–3127PubMedPubMedCentralCrossRefGoogle Scholar
  84. Nussey DH, Froy H, Lemaitre J-F et al (2013) Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Res Rev 12:214–225. doi: 10.1016/j.arr.2012.07.004 PubMedCrossRefGoogle Scholar
  85. Paaby AB, Bergland AO, Behrman EL, Schmidt PS (2014) A highly pleiotropic amino acid polymorphism in the Drosophila insulin receptor contributes to life-history adaptation. Evolution 68:3395–3409. doi: 10.1111/evo.12546 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Petralia RS, Mattson MP, Yao PJ (2014) Aging and longevity in the simplest animals and the quest for immortality. Ageing Res Rev 16:66–82. doi: 10.1016/j.arr.2014.05.003 PubMedCrossRefGoogle Scholar
  87. Pietrzak B, Dawidowicz P, Prędki P, Dańko MJ (2015) How perceived predation risk shapes patterns of aging in water fleas. Exp Gerontol 69:1–8. doi: 10.1016/j.exger.2015.05.008 PubMedCrossRefGoogle Scholar
  88. Pigliucci M (2008) Is evolvability evolvable? Nat Rev Genet 9:75–82. doi: 10.1038/nrg2278 PubMedCrossRefGoogle Scholar
  89. Pitt JN, Kaeberlein M (2015) Why is aging conserved and what can we do about it? PLoS Biol. doi: 10.1371/journal.pbio.1002131 Google Scholar
  90. Prinzinger R (2005) Programmed ageing: the theory of maximal metabolic scope. EMBO Rep 6:S14–S19. doi: 10.1038/sj.embor.7400425 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Promislow DEL (1991) Senescence in natural populations of mammals: a comparative study. Evolution 45:1869–1887. doi: 10.2307/2409837 PubMedCrossRefGoogle Scholar
  92. Rahman AM (2007) A novel method for estimating the entropy generation rate in a human body. Therm Sci 11:75–92CrossRefGoogle Scholar
  93. Rattan SIS (2005) Anti-ageing strategies: prevention or therapy? EMBO Rep 6:S25–S29. doi: 10.1038/sj.embor.7400401 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rattan SIS (2008) Hormesis in aging. Ageing Res Rev 7:63–78. doi: 10.1016/j.arr.2007.03.002 PubMedCrossRefGoogle Scholar
  95. Rattan SIS (2014) Aging is not a disease: implications for intervention. Aging Dis 5:196–202. doi: 10.14336/AD.2014.0500196 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Reznick D, Nunney L, Tessier A (2000) Big houses, big cars, superfleas and the costs of reproduction. Trends Ecol Evol 15:421–425PubMedCrossRefGoogle Scholar
  97. Reznick DN, Bryant MJ, Roff D et al (2004) Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 431:1095–1099. doi: 10.1038/nature02936 PubMedCrossRefGoogle Scholar
  98. Ricklefs RE, Cadena CD (2007) Lifespan is unrelated to investment in reproduction in populations of mammals and birds in captivity. Ecol Lett 10:867–872. doi: 10.1111/j.1461-0248.2007.01085.x PubMedCrossRefGoogle Scholar
  99. Rose MR, Graves JL (1989) What evolutionary biology can do for gerontology. J Gerontol 44:B27–29PubMedCrossRefGoogle Scholar
  100. Ryman N (1997) Minimizing adverse effects of fish culture: understanding the genetics of populations with overlapping generations. ICES J Mar Sci J Cons 54:1149–1159. doi: 10.1016/S1054-3139(97)80021-5 Google Scholar
  101. Schaible R, Scheuerlein A, Dańko MJ et al (2015) Constant mortality and fertility over age in Hydra. Proc Natl Acad Sci 112:15701–15706. doi: 10.1073/pnas.1521002112 PubMedPubMedCentralGoogle Scholar
  102. Schrödinger E (1992) What is life?: the physical aspect of the living cell; with mind and matter; & autobiographical sketches. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  103. Shanahan T (1998) The troubled past and uncertain future of group selectionism. Endeavour 22:57–60. doi: 10.1016/S0160-9327(98)01100-4 CrossRefGoogle Scholar
  104. Silva C, Annamalai K (2008) Entropy generation and human aging: lifespan entropy and effect of physical activity level. Entropy 10:100–123. doi: 10.3390/entropy-e10020100 CrossRefGoogle Scholar
  105. Silva CA, Annamalai K (2009) Entropy generation and human aging: lifespan entropy and effect of diet composition and caloric restriction diets. J Thermodyn J Thermodyn 2009:e186723. doi: 10.1155/2009/186723 Google Scholar
  106. Skulachev VP (2011) Aging as a particular case of phenoptosis, the programmed death of an organism (A response to Kirkwood and Melov “On the programmed/non-programmed nature of ageing within the life history”). Aging 3:1120–1123PubMedPubMedCentralCrossRefGoogle Scholar
  107. Skulachev VP (2012) What is “phenoptosis” and how to fight it? Biochem Biokhimiia 77:689–706. doi: 10.1134/S0006297912070012 CrossRefGoogle Scholar
  108. Skulachev MV, Skulachev VP (2014) New data on programmed aging—slow phenoptosis. Biochem Mosc 79:977–993. doi: 10.1134/S0006297914100010 CrossRefGoogle Scholar
  109. Skytthe A, Pedersen NL, Kaprio J et al (2003) Longevity studies in genomEUtwin. Twin Res 6:448–454. doi: 10.1375/136905203770326457 PubMedCrossRefGoogle Scholar
  110. Smith JM (1976) Group selection. Q Rev Biol 51:277–283CrossRefGoogle Scholar
  111. Somel M, Guo S, Fu N et al (2010) MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res 20:1207–1218. doi: 10.1101/gr.106849.110 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Takasugi M (2011) Progressive age-dependent DNA methylation changes start before adulthood in mouse tissues. Mech Ageing Dev 132:65–71. doi: 10.1016/j.mad.2010.12.003 PubMedCrossRefGoogle Scholar
  113. Tarín JJ, Gómez-Piquer V, García-Palomares S et al (2014) Absence of long-term effects of reproduction on longevity in the mouse model. Reprod Biol Endocrinol 12:84. doi: 10.1186/1477-7827-12-84 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Travis JMJ (2004) The evolution of programmed death in a spatially structured population. J Gerontol A 59:B301–B305. doi: 10.1093/gerona/59.4.B301 CrossRefGoogle Scholar
  115. Triantaphyllopoulos KA, Ikonomopoulos I, Bannister AJ (2016) Epigenetics and inheritance of phenotype variation in livestock. Epigenetics Chromatin 9:31. doi: 10.1186/s13072-016-0081-5 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Turturro A, Duffy P, Hass B et al (2002) Survival characteristics and age-adjusted disease incidences in C57BL/6 mice fed a commonly used cereal-based diet modulated by dietary restriction. J Gerontol A 57:B379–B389. doi: 10.1093/gerona/57.11.B379 CrossRefGoogle Scholar
  117. Vijg J, Kennedy BK (2016) The essence of aging. Gerontology 62:381–385. doi: 10.1159/000439348 PubMedCrossRefGoogle Scholar
  118. Weismann A, Poulton EB, Schönland S, Shipley AE (1891) Essays upon heredity and kindred biological problems, by Dr. August Weismann. Ed. by Edward B. Poulton, Selmar Schönland, and Arthur E. Shipley. Authorised translation., 2d ed. Clarendon Press, OxfordGoogle Scholar
  119. Werfel J, Ingber DE, Bar-Yam Y (2015) Programed death is favored by natural selection in spatial systems. Phys Rev Lett 114:238103. doi: 10.1103/PhysRevLett.114.238103 PubMedCrossRefGoogle Scholar
  120. White RR, Vijg J (2016) Do DNA double-strand breaks drive aging? Mol Cell 63:729–738. doi: 10.1016/j.molcel.2016.08.004 PubMedCrossRefGoogle Scholar
  121. Willcox BJ, Donlon TA, He Q et al (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci 105:13987–13992. doi: 10.1073/pnas.0801030105 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411. doi: 10.2307/2406060 CrossRefGoogle Scholar
  123. Yin D, Chen K (2005) The essential mechanisms of aging: irreparable damage accumulation of biochemical side-reactions. Exp Gerontol 40:455–465. doi: 10.1016/j.exger.2005.03.012 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Pathological Physiology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
  2. 2.Research Centre for Toxic Compounds in the Environment, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations