, Volume 17, Issue 1, pp 129–145 | Cite as

Hutchinson–Gilford progeria syndrome as a model for vascular aging

  • Jonathan A. Brassard
  • Natalie Fekete
  • Alain Garnier
  • Corinne A. HoesliEmail author
Review Article


Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder caused by a de novo genetic mutation that leads to the accumulation of a splicing isoform of lamin A termed progerin. Progerin expression alters the organization of the nuclear lamina and chromatin. The life expectancy of HGPS patients is severely reduced due to critical cardiovascular defects. Progerin also accumulates in an age-dependent manner in the vascular cells of adults that do not carry genetic mutations associated with HGPS. The molecular mechanisms that lead to vascular dysfunction in HGPS may therefore also play a role in vascular aging. The vascular phenotypic and molecular changes observed in HGPS are strikingly similar to those seen with age, including increased senescence, altered mechanotransduction and stem cell exhaustion. This article discusses the similarities and differences between age-dependent and HGPS-related vascular aging to highlight the relevance of HGPS as a model for vascular aging. Induced pluripotent stem cells derived from HGPS patients are suggested as an attractive model to study vascular aging in order to develop novel approaches to treat cardiovascular disease.


Hutchinson–Gilford progeria syndrome Induced pluripotent stem cells Mechanotransduction Senescence Stem cells Vascular aging 



Endothelial cell


Extracellular matrix


Endothelial progenitor cell


Embryonic stem cell


Hutchinson–Gilford progeria syndrome


Induced pluripotent stem cell


Mesenchymal stem cell


Nuclear factor


Nitric oxide


Reactive oxygen species


Vascular smooth muscle cell



We thank Dr. Gerardo Ferbeyre (Université de Montréal) for reviewing this manuscript, and for his insightful comments and discussion. We also thank Professor Gaétan Laroche (Université Laval and Centre de recherche du CHU de Québec) and William L. Stanford (Ottawa Hospital Research Institute and University of Ottawa) for useful discussions. We thank the Canadian Stem Cell Network (JB, AG and CH), Pfizer Ltd and Pfizer Canada Inc. (See the Potential postdoctoral fellowship awarded to CH), the Canadian Institutes of Health Research (MOP-142285), Saint-Gobain Ceramics & Plastics Inc., the ThéCell Network and the Centre québécois sur les matériaux fonctionnels (CQMF) strategic cluster of the Fonds de recherche du Québec—Nature et technologies for their financial support.


  1. Alt EU et al (2012) Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res 8:215–225. doi: 10.1016/j.scr.2011.11.002 PubMedCrossRefGoogle Scholar
  2. Andres V, Gonzalez JM (2009) Role of A-type lamins in signaling, transcription, and chromatin organization. J Cell Biol 187:945–957. doi: 10.1083/jcb.200904124 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Arancio W, Pizzolanti G, Genovese SI, Pitrone M, Giordano C (2014) Epigenetic involvement in Hutchinson–Gilford progeria syndrome: a mini-review. Gerontology 60:197–203. doi: 10.1159/000357206 PubMedCrossRefGoogle Scholar
  4. Bellantuono I, Sanguinetti G, Keith WN (2012) Progeroid syndromes: models for stem cell aging? Biogerontology 13:63–75. doi: 10.1007/s10522-011-9347-2 PubMedCrossRefGoogle Scholar
  5. Benson EK, Lee SW, Aaronson SA (2010) Role of progerin-induced telomere dysfunction in HGPS premature cellular senescence. J Cell Sci 123:2605–2612. doi: 10.1242/jcs.067306 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622. doi: 10.1038/nrg1656 PubMedCrossRefGoogle Scholar
  7. Blondel S et al (2014) Induced pluripotent stem cells reveal functional differences between drugs currently investigated in patients with hutchinson-gilford progeria syndrome. Stem Cells Transl Med 3:510–519. doi: 10.5966/sctm.2013-0168 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bond AR, Iftikhar S, Bharath AA, Weinberg PD (2011) Morphological evidence for a change in the pattern of aortic wall shear stress with age. Arterioscler Thromb Vasc Biol 31:543–550. doi: 10.1161/ATVBAHA.110.219683 PubMedCrossRefGoogle Scholar
  9. Bonello-Palot N et al (2014) Prelamin A accumulation in endothelial cells induces premature senescence and functional impairment. Atherosclerosis 237:45–52. doi: 10.1016/j.atherosclerosis.2014.08.036 PubMedCrossRefGoogle Scholar
  10. Booth-Gauthier EA, Du V, Ghibaudo M, Rape AD, Dahl KN, Ladoux B (2013) Hutchinson–Gilford progeria syndrome alters nuclear shape and reduces cell motility in three dimensional model substrates. Integr Biol (Camb) 5:569–577. doi: 10.1039/c3ib20231c CrossRefGoogle Scholar
  11. Burtner CR, Kennedy BK (2010) Progeria syndromes and ageing: what is the connection? Nat Rev Mol Cell Biol 11:567–578. doi: 10.1038/nrm2944 PubMedCrossRefGoogle Scholar
  12. Candelario J, Sudhakar S, Navarro S, Reddy S, Comai L (2008) Perturbation of wild-type lamin A metabolism results in a progeroid phenotype. Aging Cell 7:355–367. doi: 10.1111/j.1474-9726.2008.00393.x PubMedCentralPubMedCrossRefGoogle Scholar
  13. Candelario J, Borrego S, Reddy S, Comai L (2011) Accumulation of distinct prelamin A variants in human diploid fibroblasts differentially affects cell homeostasis. Exp Cell Res 317:319–329. doi: 10.1016/j.yexcr.2010.10.014 PubMedCrossRefGoogle Scholar
  14. Cao K, Capell BC, Erdos MR, Djabali K, Collins FS (2007) A lamin A protein isoform overexpressed in Hutchinson–Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc Natl Acad Sci USA 104:4949–4954. doi: 10.1073/pnas.0611640104 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Cao K et al (2011) Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J Clin Invest 121:2833–2844. doi: 10.1172/JCI43578 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Chang E, Harley CB (1995) Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci USA 92:11190–11194PubMedCentralPubMedCrossRefGoogle Scholar
  17. Chang EI et al (2007) Age decreases endothelial progenitor cell recruitment through decreases in hypoxia-inducible factor 1alpha stabilization during ischemia. Circulation 116:2818–2829. doi: 10.1161/CIRCULATIONAHA.107.715847 PubMedCrossRefGoogle Scholar
  18. Chiba S (2006) Notch signaling in stem cell systems. Stem Cells 24:2437–2447. doi: 10.1634/stemcells.2005-0661 PubMedCrossRefGoogle Scholar
  19. Constantinescu D, Gray HL, Sammak PJ, Schatten GP, Csoka AB (2006) Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24:177–185. doi: 10.1634/stemcells.2004-0159 PubMedCrossRefGoogle Scholar
  20. Csoka AB et al (2004) Genome-scale expression profiling of Hutchinson-Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis. Aging Cell 3:235–243. doi: 10.1111/j.1474-9728.2004.00105.x PubMedCrossRefGoogle Scholar
  21. Dahl KN, Scaffidi P, Islam MF, Yodh AG, Wilson KL, Misteli T (2006) Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci USA 103:10271–10276. doi: 10.1073/pnas.0601058103 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Datta S, Snow CJ, Paschal BM (2014) A pathway linking oxidative stress and the Ran GTPase system in progeria. Mol Biol Cell 25:1202–1215. doi: 10.1091/mbc.E13-07-0430 PubMedCentralPubMedCrossRefGoogle Scholar
  23. de Castro Bras LE, Toba H, Baicu CF, Zile MR, Weintraub ST, Lindsey ML, Bradshaw AD (2014) Age and SPARC change the extracellular matrix composition of the left ventricle. Biomed Res Int 2014:810562. doi: 10.1155/2014/810562 PubMedCentralPubMedCrossRefGoogle Scholar
  24. De Sandre-Giovannoli A et al (2003) Lamin a truncation in Hutchinson–Gilford progeria. Science 300:2055. doi: 10.1126/science.1084125 PubMedCrossRefGoogle Scholar
  25. De Vos WH et al (2010) Increased plasticity of the nuclear envelope and hypermobility of telomeres due to the loss of A-type lamins. Biochim Biophys Acta 1800:448–458. doi: 10.1016/j.bbagen.2010.01.002 PubMedCrossRefGoogle Scholar
  26. Decker ML, Chavez E, Vulto I, Lansdorp PM (2009) Telomere length in Hutchinson–Gilford progeria syndrome. Mech Ageing Dev 130:377–383. doi: 10.1016/j.mad.2009.03.001 PubMedCrossRefGoogle Scholar
  27. Deschenes-Simard X et al (2013) Tumor suppressor activity of the ERK/MAPK pathway by promoting selective protein degradation. Genes Dev 27:900–915. doi: 10.1101/gad.203984.112 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Eckersley-Maslin MA, Bergmann JH, Lazar Z, Spector DL (2013) Lamin A/C is expressed in pluripotent mouse embryonic stem cells. Nucleus 4:53–60. doi: 10.4161/nucl.23384 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Eckes B et al (1998) Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J Cell Sci 111(Pt13):1897–1907PubMedGoogle Scholar
  30. Eriksson M et al (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423:293–298. doi: 10.1038/nature01629 PubMedCrossRefGoogle Scholar
  31. Espada J et al (2008) Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J Cell Biol 181:27–35. doi: 10.1083/jcb.200801096 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Esue O, Carson AA, Tseng Y, Wirtz D (2006) A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin. J Biol Chem 281:30393–30399. doi: 10.1074/jbc.M605452200 PubMedCrossRefGoogle Scholar
  33. Evanko SP, Angello JC, Wight TN (1999) Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 19:1004–1013PubMedCrossRefGoogle Scholar
  34. Flores I, Canela A, Vera E, Tejera A, Cotsarelis G, Blasco MA (2008) The longest telomeres: a general signature of adult stem cell compartments. Genes Dev 22:654–667. doi: 10.1101/gad.451008 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Frangos SG, Gahtan V, Sumpio B (1999) Localization of atherosclerosis: role of hemodynamics. Arch Surg 134:1142–1149PubMedCrossRefGoogle Scholar
  36. Fyhrquist F, Saijonmaa O, Strandberg T (2013) The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol 10:274–283. doi: 10.1038/nrcardio.2013.30 PubMedCrossRefGoogle Scholar
  37. Geiger H, Denkinger M, Schirmbeck R (2014) Hematopoietic stem cell aging. Curr Opin Immunol 29:86–92. doi: 10.1016/j.coi.2014.05.002 PubMedCrossRefGoogle Scholar
  38. Gerhard-Herman M et al (2012) Mechanisms of premature vascular aging in children with Hutchinson–Gilford progeria syndrome. Hypertension 59:92–97. doi: 10.1161/HYPERTENSIONAHA.111.180919 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Goldman RD et al (2004) Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci USA 101:8963–8968. doi: 10.1073/pnas.0402943101 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Halaschek-Wiener J, Brooks-Wilson A (2007) Progeria of stem cells: stem cell exhaustion in Hutchinson-Gilford progeria syndrome. J Gerontol A Biol Sci Med Sci 62:3–8PubMedCrossRefGoogle Scholar
  41. Harten IA et al (2011) Age-dependent loss of MMP-3 in Hutchinson-Gilford progeria syndrome. J Gerontol A Biol Sci Med Sci 66:1201–1207. doi: 10.1093/gerona/glr137 PubMedCrossRefGoogle Scholar
  42. Hayashi T et al (2006) Endothelial cellular senescence is inhibited by nitric oxide: implications in atherosclerosis associated with menopause and diabetes. Proc Natl Acad Sci USA 103:17018–17023. doi: 10.1073/pnas.0607873103 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Hazel AL, Pedley TJ (2000) Vascular endothelial cells minimize the total force on their nuclei. Biophys J 78:47–54. doi: 10.1016/S0006-3495(00)76571-4 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C (2005) Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 45:1441–1448. doi: 10.1016/j.jacc.2004.12.074 PubMedCrossRefGoogle Scholar
  45. Helmlinger G, Geiger RV, Schreck S, Nerem RM (1991) Effects of pulsatile flow on cultured vascular endothelial cell morphology. J Biomech Eng 113:123–131PubMedCrossRefGoogle Scholar
  46. Hennekam RC (2006) Hutchinson–Gilford progeria syndrome: review of the phenotype. Am J Med Genet A 140:2603–2624. doi: 10.1002/ajmg.a.31346 PubMedCrossRefGoogle Scholar
  47. Hernandez L et al (2010) Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria. Dev Cell 19:413–425. doi: 10.1016/j.devcel.2010.08.013 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Ho JC et al (2011) Generation of induced pluripotent stem cell lines from 3 distinct laminopathies bearing heterogeneous mutations in lamin A/C. Aging (Albany NY) 3:380–390Google Scholar
  49. Hoffmann J, Haendeler J, Aicher A, Rossig L, Vasa M, Zeiher AM, Dimmeler S (2001) Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide. Circ Res 89:709–715PubMedCrossRefGoogle Scholar
  50. Huang S, Chen L, Libina N, Janes J, Martin GM, Campisi J, Oshima J (2005) Correction of cellular phenotypes of Hutchinson-Gilford Progeria cells by RNA interference. Hum Genet 118:444–450. doi: 10.1007/s00439-005-0051-7 PubMedCrossRefGoogle Scholar
  51. Huang S, Risques RA, Martin GM, Rabinovitch PS, Oshima J (2008) Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A. Exp Cell Res 314:82–91. doi: 10.1016/j.yexcr.2007.08.004 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15:802–812. doi: 10.1038/nrm3896 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Kalinowski A, Yaron PN, Qin Z, Shenoy S, Buehler MJ, Losche M, Dahl KN (2014) Interfacial binding and aggregation of lamin A tail domains associated with Hutchinson–Gilford progeria syndrome. Biophys Chem 195:43–48. doi: 10.1016/j.bpc.2014.08.005 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Kudlow BA, Stanfel MN, Burtner CR, Johnston ED, Kennedy BK (2008) Suppression of proliferative defects associated with processing-defective lamin A mutants by hTERT or inactivation of p53. Mol Biol Cell 19:5238–5248. doi: 10.1091/mbc.E08-05-0492 PubMedCentralPubMedCrossRefGoogle Scholar
  55. Kurz DJ, Decary S, Hong Y, Trivier E, Akhmedov A, Erusalimsky JD (2004) Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci 117:2417–2426. doi: 10.1242/jcs.01097 PubMedCrossRefGoogle Scholar
  56. Lammerding J et al (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113:370–378. doi: 10.1172/JCI19670 PubMedCentralPubMedCrossRefGoogle Scholar
  57. Lee SJ, Park SH (2013) Arterial ageing. Korean Circ J 43:73–79. doi: 10.4070/kcj.2013.43.2.73 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Liu B et al (2005) Genomic instability in laminopathy-based premature aging. Nat Med 11:780–785. doi: 10.1038/nm1266 PubMedCrossRefGoogle Scholar
  59. Liu Y, Rusinol A, Sinensky M, Wang Y, Zou Y (2006) DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A. J Cell Sci 119:4644–4649. doi: 10.1242/jcs.03263 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Liu Y, Wang Y, Rusinol AE, Sinensky MS, Liu J, Shell SM, Zou Y (2008) Involvement of xeroderma pigmentosum group A (XPA) in progeria arising from defective maturation of prelamin A. FASEB J 22:603–611. doi: 10.1096/fj.07-8598com PubMedCentralPubMedCrossRefGoogle Scholar
  61. Liu GH et al (2011) Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472:221–225. doi: 10.1038/nature09879 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Liu B, Zhou S, Liu X, Zhou K, Zhang F, Zhou Z (2013) Accumulation of prelamin A compromises NF-kappaB-regulated B-lymphopoiesis in a progeria mouse model. Longev Healthspan 2:1. doi: 10.1186/2046-2395-2-1 PubMedCentralPubMedCrossRefGoogle Scholar
  63. Lo CY et al (2014) An upregulation in the expression of vanilloid transient potential channels 2 enhances hypotonicity-induced cytosolic Ca(2)(+) rise in human induced pluripotent stem cell model of Hutchinson-Gillford Progeria. PLoS ONE 9:e87273. doi: 10.1371/journal.pone.0087273 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217. doi: 10.1016/j.cell.2013.05.039 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Matsumoto Y et al (2009) Reduced number and function of endothelial progenitor cells in patients with aortic valve stenosis: a novel concept for valvular endothelial cell repair. Eur Heart J 30:346–355. doi: 10.1093/eurheartj/ehn501 PubMedCrossRefGoogle Scholar
  66. Matthews C et al (2006) Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res 99:156–164. doi: 10.1161/01.RES.0000233315.38086.bc PubMedCrossRefGoogle Scholar
  67. McClintock D, Ratner D, Lokuge M, Owens DM, Gordon LB, Collins FS, Djabali K (2007) The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin. PLoS ONE 2:e1269. doi: 10.1371/journal.pone.0001269 PubMedCentralPubMedCrossRefGoogle Scholar
  68. Merideth MA et al (2008) Phenotype and course of Hutchinson–Gilford progeria syndrome. N Engl J Med 358:592–604. doi: 10.1056/NEJMoa0706898 PubMedCentralPubMedCrossRefGoogle Scholar
  69. Minamino T, Komuro I (2008) Vascular aging: insights from studies on cellular senescence, stem cell aging, and progeroid syndromes. Nat Clin Pract Cardiovasc Med 5:637–648. doi: 10.1038/ncpcardio1324 PubMedCrossRefGoogle Scholar
  70. Miyoshi N, Oubrahim H, Chock PB, Stadtman ER (2006) Age-dependent cell death and the role of ATP in hydrogen peroxide-induced apoptosis and necrosis. Proc Natl Acad Sci USA 103:1727–1731. doi: 10.1073/pnas.0510346103 PubMedCentralPubMedCrossRefGoogle Scholar
  71. Moiseeva O, Lessard F, Acevedo-Aquino M, Vernier M, Tsantrizos YS, Ferbeyre G (2015) Mutant lamin A links prophase to a p53 independent senescence program. Cell Cycle 14:2408–2421. doi: 10.1080/15384101.2015.1053671 PubMedCrossRefGoogle Scholar
  72. Mun GI, Lee SJ, An SM, Kim IK, Boo YC (2009) Differential gene expression in young and senescent endothelial cells under static and laminar shear stress conditions. Free Radic Biol Med 47:291–299. doi: 10.1016/j.freeradbiomed.2009.04.032 PubMedCrossRefGoogle Scholar
  73. Nakano-Kurimoto R et al (2009) Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition. Am J Physiol Heart Circ Physiol 297:H1673–1684. doi: 10.1152/ajpheart.00455.2009 PubMedCrossRefGoogle Scholar
  74. Nishio K, Inoue A (2005) Senescence-associated alterations of cytoskeleton: extraordinary production of vimentin that anchors cytoplasmic p53 in senescent human fibroblasts. Histochem Cell Biol 123:263–273. doi: 10.1007/s00418-005-0766-5 PubMedCrossRefGoogle Scholar
  75. Okuda K, Khan MY, Skurnick J, Kimura M, Aviv H, Aviv A (2000) Telomere attrition of the human abdominal aorta: relationships with age and atherosclerosis. Atherosclerosis 152:391–398PubMedCrossRefGoogle Scholar
  76. Olive M et al (2010) Cardiovascular pathology in Hutchinson–Gilford progeria: correlation with the vascular pathology of aging. Arterioscler Thromb Vasc Biol 30:2301–2309. doi: 10.1161/ATVBAHA.110.209460 PubMedCentralPubMedCrossRefGoogle Scholar
  77. Osorio FG et al (2012) Nuclear lamina defects cause ATM-dependent NF-kappaB activation and link accelerated aging to a systemic inflammatory response. Genes Dev 26:2311–2324. doi: 10.1101/gad.197954.112 PubMedCentralPubMedCrossRefGoogle Scholar
  78. Pacheco LM, Gomez LA, Dias J, Ziebarth NM, Howard GA, Schiller PC (2014) Progerin expression disrupts critical adult stem cell functions involved in tissue repair. Aging (Albany NY) 6:1049–1063Google Scholar
  79. Pekovic V, Hutchison CJ (2008) Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J Anat 213:5–25. doi: 10.1111/j.1469-7580.2008.00928.x PubMedCentralPubMedCrossRefGoogle Scholar
  80. Pendas AM et al (2002) Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat Genet 31:94–99. doi: 10.1038/ng871 PubMedGoogle Scholar
  81. Philip JT, Dahl KN (2008) Nuclear mechanotransduction: response of the lamina to extracellular stress with implications in aging. J Biomech 41:3164–3170. doi: 10.1016/j.jbiomech.2008.08.024 PubMedCrossRefGoogle Scholar
  82. Qin Z, Kalinowski A, Dahl KN, Buehler MJ (2011) Structure and stability of the lamin A tail domain and HGPS mutant. J Struct Biol 175:425–433. doi: 10.1016/j.jsb.2011.05.015 PubMedCentralPubMedCrossRefGoogle Scholar
  83. Ragnauth CD et al (2010) Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging. Circulation 121:2200–2210. doi: 10.1161/CIRCULATIONAHA.109.902056 PubMedCrossRefGoogle Scholar
  84. Raz V et al (2008) The nuclear lamina promotes telomere aggregation and centromere peripheral localization during senescence of human mesenchymal stem cells. J Cell Sci 121:4018–4028. doi: 10.1242/jcs.034876 PubMedCrossRefGoogle Scholar
  85. Rennenberg RJ, Kessels AG, Schurgers LJ, van Engelshoven JM, de Leeuw PW, Kroon AA (2009) Vascular calcifications as a marker of increased cardiovascular risk: a meta-analysis. Vasc Health Risk Manag 5:185–197PubMedCentralPubMedCrossRefGoogle Scholar
  86. Ribeiro AJ, Khanna P, Sukumar A, Dong C, Dahl KN (2014) Nuclear stiffening inhibits migration of invasive melanoma cells. Cell Mol Bioeng 7:544–551. doi: 10.1007/s12195-014-0358-3 PubMedCentralPubMedCrossRefGoogle Scholar
  87. Rodriguez S, Coppede F, Sagelius H, Eriksson M (2009) Increased expression of the Hutchinson–Gilford progeria syndrome truncated lamin A transcript during cell aging. Eur J Hum Genet 17:928–937. doi: 10.1038/ejhg.2008.270 PubMedCentralPubMedCrossRefGoogle Scholar
  88. Rosengardten Y, McKenna T, Grochova D, Eriksson M (2011) Stem cell depletion in Hutchinson–Gilford progeria syndrome. Aging Cell 10:1011–1020. doi: 10.1111/j.1474-9726.2011.00743.x PubMedCrossRefGoogle Scholar
  89. Rossi DJ, Jamieson CH, Weissman IL (2008) Stems cells and the pathways to aging and cancer. Cell 132:681–696. doi: 10.1016/j.cell.2008.01.036 PubMedCrossRefGoogle Scholar
  90. Rouleau L, Rossi J, Leask RL (2010) The response of human aortic endothelial cells in a stenotic hemodynamic environment: effect of duration, magnitude, and spatial gradients in wall shear stress. J Biomech Eng 132:071015PubMedCrossRefGoogle Scholar
  91. Rusinol AE, Sinensky MS (2006) Farnesylated lamins, progeroid syndromes and farnesyl transferase inhibitors. J Cell Sci 119:3265–3272. doi: 10.1242/jcs.03156 PubMedCrossRefGoogle Scholar
  92. Satoh M, Ishikawa Y, Takahashi Y, Itoh T, Minami Y, Nakamura M (2008) Association between oxidative DNA damage and telomere shortening in circulating endothelial progenitor cells obtained from metabolic syndrome patients with coronary artery disease. Atherosclerosis 198:347–353. doi: 10.1016/j.atherosclerosis.2007.09.040 PubMedCrossRefGoogle Scholar
  93. Sawabe M (2010) Vascular aging: from molecular mechanism to clinical significance. Geriatr Gerontol Int 10(Suppl 1):S213–220. doi: 10.1111/j.1447-0594.2010.00603.x PubMedCrossRefGoogle Scholar
  94. Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312:1059–1063. doi: 10.1126/science.1127168 PubMedCentralPubMedCrossRefGoogle Scholar
  95. Scaffidi P, Misteli T (2008) Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 10:452–459. doi: 10.1038/ncb1708 PubMedCentralPubMedCrossRefGoogle Scholar
  96. Sedelnikova OA, Horikawa I, Zimonjic DB, Popescu NC, Bonner WM, Barrett JC (2004) Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat Cell Biol 6:168–170. doi: 10.1038/ncb1095 PubMedCrossRefGoogle Scholar
  97. Sedelnikova OA, Horikawa I, Redon C, Nakamura A, Zimonjic DB, Popescu NC, Bonner WM (2008) Delayed kinetics of DNA double-strand break processing in normal and pathological aging. Aging Cell 7:89–100. doi: 10.1111/j.1474-9726.2007.00354.x PubMedCrossRefGoogle Scholar
  98. Serio RN (2011) Unraveling the mysteries of aging through a Hutchinson-Gilford progeria syndrome model. Rejuvenation Res 14:133–141. doi: 10.1089/rej.2010.1088 PubMedCrossRefGoogle Scholar
  99. Shanahan CM (2013) Mechanisms of vascular calcification in CKD-evidence for premature ageing? Nat Rev Nephrol 9:661–670. doi: 10.1038/nrneph.2013.176 PubMedCrossRefGoogle Scholar
  100. Sharpless NE, DePinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8:703–713. doi: 10.1038/nrm2241 PubMedCrossRefGoogle Scholar
  101. Slack C, Alic N, Foley A, Cabecinha M, Hoddinott MP, Partridge L (2015) The Ras-Erk-ETS-Signaling pathway is a drug target for longevity. Cell 162:72–83. doi: 10.1016/j.cell.2015.06.023 PubMedCentralPubMedCrossRefGoogle Scholar
  102. Snow CJ, Dar A, Dutta A, Kehlenbach RH, Paschal BM (2013) Defective nuclear import of Tpr in Progeria reflects the Ran sensitivity of large cargo transport. J Cell Biol 201:541–557. doi: 10.1083/jcb.201212117 PubMedCentralPubMedCrossRefGoogle Scholar
  103. Song M, San H, Anderson SA, Cannon RO III, Orlic D (2014) Shear stress-induced mechanotransduction protein deregulation and vasculopathy in a mouse model of progeria. Stem Cell Res Ther 5:41. doi: 10.1186/scrt429 PubMedCentralPubMedCrossRefGoogle Scholar
  104. Stehbens WE, Wakefield SJ, Gilbert-Barness E, Olson RE, Ackerman J (1999) Histological and ultrastructural features of atherosclerosis in progeria. Cardiovasc Pathol 8:29–39PubMedCrossRefGoogle Scholar
  105. Stehbens WE, Delahunt B, Shozawa T, Gilbert-Barness E (2001) Smooth muscle cell depletion and collagen types in progeric arteries. Cardiovasc Pathol 10:133–136PubMedCrossRefGoogle Scholar
  106. Stochaj U, Kodiha M, Shum-Tim D, Colmegna I (2013) Implications of multipotent mesenchymal stromal cell aging. Regen Med 8:211–222. doi: 10.2217/rme.13.10 PubMedCrossRefGoogle Scholar
  107. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. doi: 10.1016/j.cell.2006.07.024 PubMedCrossRefGoogle Scholar
  108. Varela I et al (2005) Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437:564–568. doi: 10.1038/nature04019 PubMedCrossRefGoogle Scholar
  109. Varga R et al (2006) Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci USA 103:3250–3255. doi: 10.1073/pnas.0600012103 PubMedCentralPubMedCrossRefGoogle Scholar
  110. Vasa M et al (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89:E1–7PubMedCrossRefGoogle Scholar
  111. Vasile E, Tomita Y, Brown LF, Kocher O, Dvorak HF (2001) Differential expression of thymosin beta-10 by early passage and senescent vascular endothelium is modulated by VPF/VEGF: evidence for senescent endothelial cells in vivo at sites of atherosclerosis. FASEB J 15:458–466. doi: 10.1096/fj.00-0051com PubMedCrossRefGoogle Scholar
  112. Verstraeten VL, Ji JY, Cummings KS, Lee RT, Lammerding J (2008) Increased mechanosensitivity and nuclear stiffness in Hutchinson–Gilford progeria cells: effects of farnesyltransferase inhibitors. Aging Cell 7:383–393. doi: 10.1111/j.1474-9726.2008.00382.x PubMedCentralPubMedCrossRefGoogle Scholar
  113. Villa-Bellosta R, Rivera-Torres J, Osorio FG, Acin-Perez R, Enriquez JA, Lopez-Otin C, Andres V (2013) Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson–Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation 127:2442–2451. doi: 10.1161/CIRCULATIONAHA.112.000571 PubMedCrossRefGoogle Scholar
  114. Viteri G, Chung YW, Stadtman ER (2010) Effect of progerin on the accumulation of oxidized proteins in fibroblasts from Hutchinson Gilford progeria patients. Mech Ageing Dev 131:2–8. doi: 10.1016/j.mad.2009.11.006 PubMedCentralPubMedCrossRefGoogle Scholar
  115. Voghel G et al (2007) Cellular senescence in endothelial cells from atherosclerotic patients is accelerated by oxidative stress associated with cardiovascular risk factors. Mech Ageing Dev 128:662–671. doi: 10.1016/j.mad.2007.09.006 PubMedCrossRefGoogle Scholar
  116. Wang JC, Bennett M (2012) Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res 111:245–259. doi: 10.1161/CIRCRESAHA.111.261388 PubMedCrossRefGoogle Scholar
  117. Wang L et al (2012) A proteomic study of Hutchinson–Gilford progeria syndrome: application of 2D-chromotography in a premature aging disease. Biochem Biophys Res Commun 417:1119–1126. doi: 10.1016/j.bbrc.2011.12.056 PubMedCrossRefGoogle Scholar
  118. Wang C, Baker BM, Chen CS, Schwartz MA (2013) Endothelial cell sensing of flow direction. Arterioscler Thromb Vasc Biol 33:2130–2136. doi: 10.1161/ATVBAHA.113.301826 PubMedCrossRefGoogle Scholar
  119. Wang M, Jiang L, Monticone RE, Lakatta EG (2014) Proinflammation: the key to arterial aging. Trends Endocrinol Metab 25:72–79. doi: 10.1016/j.tem.2013.10.002 PubMedCentralPubMedCrossRefGoogle Scholar
  120. Wenzel V et al (2012) Naive adult stem cells from patients with Hutchinson-Gilford progeria syndrome express low levels of progerin in vivo. Biol Open 1:516–526. doi: 10.1242/bio.20121149 PubMedCentralPubMedCrossRefGoogle Scholar
  121. Wu H, Roks AJ (2014) Genomic instability and vascular aging: a focus on nucleotide excision repair. Trends Cardiovasc Med 24:61–68. doi: 10.1016/j.tcm.2013.06.005 PubMedCrossRefGoogle Scholar
  122. Zhang J et al (2011) A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8:31–45. doi: 10.1016/j.stem.2010.12.002 PubMedCrossRefGoogle Scholar
  123. Zhang H, Kieckhaefer JE, Cao K (2013) Mouse models of laminopathies. Aging Cell 12:2–10. doi: 10.1111/acel.12021 PubMedCrossRefGoogle Scholar
  124. Zhang H, Xiong ZM, Cao K (2014) Mechanisms controlling the smooth muscle cell death in progeria via down-regulation of poly(ADP-ribose) polymerase 1. Proc Natl Acad Sci USA 111:E2261–2270. doi: 10.1073/pnas.1320843111 PubMedCentralPubMedCrossRefGoogle Scholar
  125. Zuela N, Bar DZ, Gruenbaum Y (2012) Lamins in development, tissue maintenance and stress. EMBO Rep 13:1070–1078. doi: 10.1038/embor.2012.167 PubMedCentralPubMedCrossRefGoogle Scholar
  126. Zuo B et al (2012) Influences of lamin A levels on induction of pluripotent stem cells. Biol Open 1:1118–1127. doi: 10.1242/bio.20121586 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Chemical EngineeringMcGill UniversityMontréalCanada
  2. 2.Department of Chemical EngineeringUniversité LavalQuébecCanada

Personalised recommendations