Advertisement

Biogerontology

, Volume 17, Issue 1, pp 7–19 | Cite as

Inflammaging decreases adaptive and innate immune responses in mice and humans

  • Daniela FrascaEmail author
  • Bonnie B. Blomberg
Review Article

Abstract

Both the innate and adaptive immune systems decline with age, causing greater susceptibility to infectious diseases and reduced responses to vaccination. Diseases are more severe in elderly than in young individuals and have a greater impact on health outcomes such as morbidity, disability and mortality. Aging is characterized by increased low-grade chronic inflammation, called “inflammaging”, measured by circulating levels of TNF-α, IL-6 and CRP, as well as by latent infections with viruses such as cytomegalovirus. Inflammaging has received considerable attention because it proposes a link between changes in immune cells and a number of diseases and syndromes typical of old age. In this review we aim at summarizing the current knowledge on pathways contributing to inflammaging, on immune responses down-regulated by inflammation and mechanisms proposed. The defects in the immune response of elderly individuals presented in this review should help to discover avenues for effective intervention to promote healthy aging.

Keywords

Aging Immunity Inflammaging Vaccine responses 

Notes

Acknowledgments

This study was supported by NIH AG-32576 and AG023717 grants to BBB and by NIH AI096446 and AG042826 grants to BBB and DF.

References

  1. Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15:539–553. doi: 10.1002/(SICI)1096-9136(199807)15:7<539:AID-DIA668>3.0.CO;2-S PubMedCrossRefGoogle Scholar
  2. Antonicelli R et al (2005) The interleukin-6 -174 G>C promoter polymorphism is associated with a higher risk of death after an acute coronary syndrome in male elderly patients. Int J Cardiol 103:266–271. doi: 10.1016/j.ijcard.2004.08.064 PubMedCrossRefGoogle Scholar
  3. Biagi E et al (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5:e10667. doi: 10.1371/journal.pone.0010667 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Biagi E, Candela M, Turroni S, Garagnani P, Franceschi C, Brigidi P (2013) Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol Res 69:11–20. doi: 10.1016/j.phrs.2012.10.005 PubMedCrossRefGoogle Scholar
  5. Boehmer ED, Goral J, Faunce DE, Kovacs EJ (2004) Age-dependent decrease in Toll-like receptor 4-mediated proinflammatory cytokine production and mitogen-activated protein kinase expression. J Leukoc Biol 75:342–349. doi: 10.1189/jlb.0803389 PubMedCrossRefGoogle Scholar
  6. Brennan FM, Gibbons DL, Cope AP, Katsikis P, Maini RN, Feldmann M (1995) TNF inhibitors are produced spontaneously by rheumatoid and osteoarthritic synovial joint cell cultures: evidence of feedback control of TNF action. Scand J Immunol 42:158–165PubMedCrossRefGoogle Scholar
  7. Brubaker AL, Palmer JL, Kovacs EJ (2011) Age-related dysregulation of inflammation and innate immunity: lessons learned from rodent models. Aging Dis 2:346–360PubMedCentralPubMedGoogle Scholar
  8. Bryl E, Vallejo AN, Weyand CM, Goronzy JJ (2001) Down-regulation of CD28 expression by TNF-alpha. J Immunol 167:3231–3238PubMedCrossRefGoogle Scholar
  9. Bryl E, Vallejo AN, Matteson EL, Witkowski JM, Weyand CM, Goronzy JJ (2005) Modulation of CD28 expression with anti-tumor necrosis factor alpha therapy in rheumatoid arthritis. Arthritis Rheum 52:2996–3003. doi: 10.1002/art.21353 PubMedCrossRefGoogle Scholar
  10. Campisi J (2011) Cellular senescence: putting the paradoxes in perspective. Curr Opin Genet Dev 21:107–112. doi: 10.1016/j.gde.2010.10.005 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Casas R, Sacanella E, Estruch R (2014) The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases. Endocr Metab Immune Disord Drug Targets 14:245–254PubMedCentralPubMedCrossRefGoogle Scholar
  12. Davalos AR, Coppe JP, Campisi J, Desprez PY (2010) Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev 29:273–283. doi: 10.1007/s10555-010-9220-9 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Derhovanessian E, Larbi A, Pawelec G (2009) Biomarkers of human immunosenescence: impact of Cytomegalovirus infection. Curr Opin Immunol 21:440–445. doi: 10.1016/j.coi.2009.05.012 PubMedCrossRefGoogle Scholar
  14. Derhovanessian E et al (2013a) Lower proportion of naive peripheral CD8+ T cells and an unopposed pro-inflammatory response to Human Cytomegalovirus proteins in vitro are associated with longer survival in very elderly people. Age 35:1387–1399. doi: 10.1007/s11357-012-9425-7 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Derhovanessian E, Theeten H, Hahnel K, Van Damme P, Cools N, Pawelec G (2013b) Cytomegalovirus-associated accumulation of late-differentiated CD4 T-cells correlates with poor humoral response to influenza vaccination. Vaccine 31:685–690. doi: 10.1016/j.vaccine.2012.11.041 PubMedCrossRefGoogle Scholar
  16. Derhovanessian E, Maier AB, Hahnel K, McElhaney JE, Slagboom EP, Pawelec G (2014) Latent infection with Cytomegalovirus is associated with poor memory CD4 responses to influenza A core proteins in the elderly. J Immunol 193:3624–3631. doi: 10.4049/jimmunol.1303361 PubMedCrossRefGoogle Scholar
  17. Duddy M et al (2007) Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J Immunol 178:6092–6099PubMedCrossRefGoogle Scholar
  18. Effros RB, Dagarag M, Spaulding C, Man J (2005) The role of CD8+ T-cell replicative senescence in human aging. Immunol Rev 205:147–157. doi: 10.1111/j.0105-2896.2005.00259.x PubMedCrossRefGoogle Scholar
  19. Fabbri M, Paone A, Calore F, Galli R, Croce CM (2013) A new role for microRNAs, as ligands of Toll-like receptors. RNA Biol 10:169–174. doi: 10.4161/rna.23144 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Fishman D, Faulds G, Jeffery R, Mohamed-Ali V, Yudkin JS, Humphries S, Woo P (1998) The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Investig 102:1369–1376. doi: 10.1172/JCI2629 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Forsythe LK, Wallace JM, Livingstone MB (2008) Obesity and inflammation: the effects of weight loss. Nutr Res Rev 21:117–133. doi: 10.1017/S0954422408138732 PubMedCrossRefGoogle Scholar
  22. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence Annals of the New York Academy of Sciences 908:244–254PubMedCrossRefGoogle Scholar
  23. Franceschi C et al (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105. doi: 10.1016/j.mad.2006.11.016 PubMedCrossRefGoogle Scholar
  24. Frasca D, Blomberg BB (2011) Aging affects human B cell responses. J Clin Immunol 31:430–435. doi: 10.1007/s10875-010-9501-7 PubMedCrossRefGoogle Scholar
  25. Frasca D, Landin AM, Alvarez JP, Blackshear PJ, Riley RL, Blomberg BB (2007) Tristetraprolin, a negative regulator of mRNA stability, is increased in old B cells and is involved in the degradation of E47 mRNA. J Immunol 179:918–927PubMedCrossRefGoogle Scholar
  26. Frasca D et al (2010) Intrinsic defects in B cell response to seasonal influenza vaccination in elderly humans. Vaccine 28:8077–8084. doi: 10.1016/j.vaccine.2010.10.023 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Frasca D, Diaz A, Romero M, Landin AM, Blomberg BB (2011) Age effects on B cells and humoral immunity in humans. Ageing Res Rev 10:330–335. doi: 10.1016/j.arr.2010.08.004 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Frasca D, Diaz A, Romero M, Phillips M, Mendez NV, Landin AM, Blomberg BB (2012a) Unique biomarkers for B-cell function predict the serum response to pandemic H1N1 influenza vaccine. Int Immunol 24:175–182. doi: 10.1093/intimm/dxr123 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Frasca D et al (2012b) A molecular mechanism for TNF-alpha-mediated downregulation of B cell responses. J Immunol 188:279–286. doi: 10.4049/jimmunol.1003964 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Frasca D, Diaz A, Romero M, Mendez NV, Landin AM, Ryan JG, Blomberg BB (2013) Young and elderly patients with type 2 diabetes have optimal B cell responses to the seasonal influenza vaccine. Vaccine 31:3603–3610. doi: 10.1016/j.vaccine.2013.05.003 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Frasca D, Diaz A, Romero M, Landin AM, Blomberg BB (2014) High TNF-alpha levels in resting B cells negatively correlate with their response. Exp Gerontol 54:116–122. doi: 10.1016/j.exger.2014.01.004 PubMedCrossRefGoogle Scholar
  32. Frasca D, Diaz A, Romero M, Landin AM, Blomberg BB (2015) Cytomegalovirus (CMV) seropositivity decreases B cell responses to the influenza vaccine. Vaccine 33:1433–1439. doi: 10.1016/j.vaccine.2015.01.071
  33. Freeman RB Jr (2009) The ‘indirect’ effects of Cytomegalovirus infection. Am J Transpl 9:2453–2458. doi: 10.1111/j.1600-6143.2009.02824.x CrossRefGoogle Scholar
  34. Freund A, Orjalo AV, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16:238–246. doi: 10.1016/j.molmed.2010.03.003 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Giacconi R et al (2004) The -174G/C polymorphism of IL-6 is useful to screen old subjects at risk for atherosclerosis or to reach successful ageing. Exp Gerontol 39:621–628. doi: 10.1016/j.exger.2003.12.013 PubMedCrossRefGoogle Scholar
  36. Gomez CR, Goral J, Ramirez L, Kopf M, Kovacs EJ (2006) Aberrant acute-phase response in aged interleukin-6 knockout mice. Shock 25:581–585. doi: 10.1097/01.shk.000029553.39081.ec PubMedCrossRefGoogle Scholar
  37. Goronzy JJ, Weyand CM (2005) Rheumatoid arthritis. Immunol Rev 204:55–73. doi: 10.1111/j.0105-2896.2005.00245.x PubMedCrossRefGoogle Scholar
  38. Goronzy JJ, Fulbright JW, Crowson CS, Poland GA, O’Fallon WM, Weyand CM (2001) Value of immunological markers in predicting responsiveness to influenza vaccination in elderly individuals. J Virol 75:12182–12187. doi: 10.1128/JVI.75.24.12182-12187.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Goronzy JJ, Henel G, Sawai H, Singh K, Lee EB, Pryshchep S, Weyand CM (2005) Costimulatory pathways in rheumatoid synovitis and T-cell senescence. Ann N Y Acad Sci 1062:182–194. doi: 10.1196/annals.1358.022 PubMedCrossRefGoogle Scholar
  40. Haspot F et al (2012) Human Cytomegalovirus entry into dendritic cells occurs via a macropinocytosis-like pathway in a pH-independent and cholesterol-dependent manner. PloS One 7:e34795. doi: 10.1371/journal.pone.0034795 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Hass DJ, Brensinger CM, Lewis JD, Lichtenstein GR (2006) The impact of increased body mass index on the clinical course of Crohn’s disease. Clin Gastroenterol Hepatol 4:482–488. doi: 10.1016/j.cgh.2005.12.015 PubMedCrossRefGoogle Scholar
  42. Heintz C, Mair W (2014) You are what you host: microbiome modulation of the aging process. Cell 156:408–411. doi: 10.1016/j.cell.2014.01.025 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Hinojosa CA, Akula Suresh Babu R, Rahman MM, Fernandes G, Boyd AR, Orihuela CJ (2014) Elevated A20 contributes to age-dependent macrophage dysfunction in the lungs. Exp Gerontol 54:58–66. doi: 10.1016/j.exger.2014.01.007 PubMedCrossRefGoogle Scholar
  44. Holmes C et al (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73:768–774. doi: 10.1212/WNL.0b013e3181b6bb95 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867. doi: 10.1038/nature05485 PubMedCrossRefGoogle Scholar
  46. Isaacs JD (2009) Therapeutic agents for patients with rheumatoid arthritis and an inadequate response to tumour necrosis factor-alpha antagonists. Expert Opin Biol Ther 9:1463–1475. doi: 10.1517/14712590903379494 PubMedCrossRefGoogle Scholar
  47. Johnson AM, Olefsky JM (2013) The origins and drivers of insulin resistance. Cell 152:673–684. doi: 10.1016/j.cell.2013.01.041 PubMedCrossRefGoogle Scholar
  48. Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493:338–345. doi: 10.1038/nature11861 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512. doi: 10.1038/nature08980 PubMedCrossRefGoogle Scholar
  50. Khurana S, Frasca D, Blomberg B, Golding H (2012) AID activity in B cells strongly correlates with polyclonal antibody affinity maturation in vivo following pandemic 2009-H1N1 vaccination in humans. PLoS Pathog 8:e1002920. doi: 10.1371/journal.ppat.1002920 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Kovacs EJ, Grabowski KA, Duffner LA, Plackett TP, Gregory MS (2002) Survival and cell mediated immunity after burn injury in aged mice. J Am Aging Assoc 25:3–9. doi: 10.1007/s11357-002-0001-4 PubMedCentralPubMedGoogle Scholar
  52. Kovaiou RD, Herndler-Brandstetter D, Grubeck-Loebenstein B (2007) Age-related changes in immunity: implications for vaccination in the elderly. Expert Rev Mol Med 9:1–17. doi: 10.1017/S1462399407000221 PubMedCrossRefGoogle Scholar
  53. Lang A, Nikolich-Zugich J (2011) Functional CD8 T cell memory responding to persistent latent infection is maintained for life. J Immunol 187:3759–3768. doi: 10.4049/jimmunol.1100666 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Lanna A, Henson SM, Escors D, Akbar AN (2014) The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB 1 drives the senescence of human T cells. Nat Immunol 15:965–972. doi: 10.1038/ni.2981 PubMedCentralPubMedCrossRefGoogle Scholar
  55. Lewis DE, Yang L, Luo W, Wang X, Rodgers JR (1999) HIV-specific cytotoxic T lymphocyte precursors exist in a CD28-CD8+ T cell subset and increase with loss of CD4 T cells. Aids 13:1029–1033PubMedCrossRefGoogle Scholar
  56. Lindholm E, Bakhtadze E, Cilio C, Agardh E, Groop L, Agardh CD (2008) Association between LTA TNF and AGER polymorphisms and late diabetic complications. PLoS One 3:e2546. doi: 10.1371/journal.pone.0002546 PubMedCentralPubMedCrossRefGoogle Scholar
  57. Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5:133–139. doi: 10.1038/ni1033 PubMedCrossRefGoogle Scholar
  58. Lio D et al (2002a) Genotype frequencies of the +874T→A single nucleotide polymorphism in the first intron of the interferon-γ gene in a sample of Sicilian patients affected by tuberculosis. Eur J Immunogenet 29:371–374PubMedCrossRefGoogle Scholar
  59. Lio D et al (2002b) Allele frequencies of +874T → A single nucleotide polymorphism at the first intron of interferon-γ gene in a group of Italian centenarians. Exp Gerontol 37:315–319PubMedCrossRefGoogle Scholar
  60. Lio D et al (2002c) Gender-specific association between -1082 IL-10 promoter polymorphism and longevity. Genes Immun 3:30–33. doi: 10.1038/sj.gene.6363827 PubMedCrossRefGoogle Scholar
  61. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Investig 117:175–184. doi: 10.1172/JCI29881 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Lund FE, Hollifield M, Schuer K, Lines JL, Randall TD, Garvy BA (2006) B cells are required for generation of protective effector and memory CD4 cells in response to Pneumocystis lung infection. J Immunol 176:6147–6154PubMedCrossRefGoogle Scholar
  63. Marandu TF, Finsterbusch K, Kroger A, Cicin-Sain L (2014) Mouse CMV infection delays antibody class switch upon an unrelated virus challenge. Exp Gerontol 54:101–108. doi: 10.1016/j.exger.2014.01.017 PubMedCrossRefGoogle Scholar
  64. Martinez-Taboada VM, Goronzy JJ, Weyand CM (1996) Clonally expanded CD8 T cells in patients with polymyalgia rheumatica and giant cell arteritis. Clin Immunol Immunopathol 79:263–270PubMedCrossRefGoogle Scholar
  65. McElhaney JE, Pinkoski MJ, Au D, Lechelt KE, Bleackley RC, Meneilly GS (1996) Helper and cytotoxic T lymphocyte responses to influenza vaccination in healthy compared to diabetic elderly. Vaccine 14:539–544PubMedCrossRefGoogle Scholar
  66. McElhaney JE, Zhou X, Talbot HK, Soethout E, Bleackley RC, Granville DJ, Pawelec G (2012) The unmet need in the elderly: how immunosenescence, CMV infection, co-morbidities and frailty are a challenge for the development of more effective influenza vaccines. Vaccine 30:2060–2067. doi: 10.1016/j.vaccine.2012.01.015 PubMedCentralPubMedCrossRefGoogle Scholar
  67. Meier J, Sturm A (2009) The intestinal epithelial barrier: does it become impaired with age? Dig Dis 27:240–245. doi: 10.1159/000228556 PubMedCrossRefGoogle Scholar
  68. Menard LC et al (2007) B cells amplify IFN-γ production by T cells via a TNF-α-mediated mechanism. J Immunol 179:4857–4866PubMedCrossRefGoogle Scholar
  69. Mohanty S et al (2014) Prolonged proinflammatory cytokine production in monocytes modulated by interleukin 10 after influenza vaccination in older adults. J Infect Dis. doi: 10.1093/infdis/jiu573 PubMedCentralGoogle Scholar
  70. Mueller S et al (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 72:1027–1033. doi: 10.1128/AEM.72.2.1027-1033.2006 PubMedCentralPubMedCrossRefGoogle Scholar
  71. Mundy GR (2007) Osteoporosis and inflammation. Nutr Rev 65:S147–S151PubMedCrossRefGoogle Scholar
  72. Murciano C, Yanez A, O’Connor JE, Gozalbo D, Gil ML (2008) Influence of aging on murine neutrophil and macrophage function against Candida albicans. FEMS Immunol Med Microbiol 53:214–221. doi: 10.1111/j.1574-695X.2008.00418.x PubMedCrossRefGoogle Scholar
  73. Neil GA, Summers RW, Cheyne BA, Carpenter C, Huang WL, Waldschmidt TJ (1994) Analysis of T-lymphocyte subpopulations in inflammatory bowel diseases by three-color flow cytometry. Dig Dis Sci 39:1900–1908PubMedCrossRefGoogle Scholar
  74. Nikolajczyk BS (2010) B cells as under-appreciated mediators of non-auto-immune inflammatory disease. Cytokine 50:234–242. doi: 10.1016/j.cyto.2010.02.022 PubMedCentralPubMedCrossRefGoogle Scholar
  75. Nishimura S et al (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15:914–920. doi: 10.1038/nm.1964 PubMedCrossRefGoogle Scholar
  76. Olivieri F et al (2002) The -174 C/G locus affects in vitro/in vivo IL-6 production during aging. Exp Gerontol 37:309–314PubMedCrossRefGoogle Scholar
  77. Olivieri F et al (2013a) MiR-146a as marker of senescence-associated pro-inflammatory status in cells involved in vascular remodelling. Age 35:1157–1172. doi: 10.1007/s11357-012-9440-8 PubMedCentralPubMedCrossRefGoogle Scholar
  78. Olivieri F, Rippo MR, Procopio AD, Fazioli F (2013b) Circulating inflamma-miRs in aging and age-related diseases. Front Genet 4:121. doi: 10.3389/fgene.2013.00121 PubMedCentralPubMedCrossRefGoogle Scholar
  79. Olsson J, Wikby A, Johansson B, Lofgren S, Nilsson BO, Ferguson FG (2000) Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech Ageing Dev 121:187–201PubMedCrossRefGoogle Scholar
  80. Panda A et al (2010) Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol 184:2518–2527. doi: 10.4049/jimmunol.0901022 PubMedCrossRefGoogle Scholar
  81. Parish ST, Wu JE, Effros RB (2009) Modulation of T lymphocyte replicative senescence via TNF-α inhibition: role of caspase-3. J Immunol 182:4237–4243. doi: 10.4049/jimmunol.0803449 PubMedCentralPubMedCrossRefGoogle Scholar
  82. Park HL et al (2014) Obesity-induced chronic inflammation is associated with the reduced efficacy of influenza vaccine. Hum Vaccines Immunother 10:1181–1186. doi: 10.4161/hv.28332 CrossRefGoogle Scholar
  83. Pawelec G et al (2002) T cells and aging, January 2002 update. Front Biosci 7:d1056–d1183PubMedGoogle Scholar
  84. Pawelec G, Derhovanessian E, Larbi A, Strindhall J, Wikby A (2009) Cytomegalovirus and human immunosenescence. Rev Med Virol 19:47–56. doi: 10.1002/rmv.598 PubMedCrossRefGoogle Scholar
  85. Pinti M et al (2014) Circulating mitochondrial DNA increases with age and is a familiar trait: implications for “inflamm-aging”. Eur J Immunol 44:1552–1562. doi: 10.1002/eji.201343921 PubMedCrossRefGoogle Scholar
  86. Po JL, Gardner EM, Anaraki F, Katsikis PD, Murasko DM (2002) Age-associated decrease in virus-specific CD8+ T lymphocytes during primary influenza infection. Mech Ageing Dev 123:1167–1181PubMedCrossRefGoogle Scholar
  87. Pozzilli P et al (1986) The immune response to influenza vaccination in diabetic patients. Diabetologia 29:850–854PubMedCrossRefGoogle Scholar
  88. Pravica V, Perrey C, Stevens A, Lee JH, Hutchinson IV (2000) A single nucleotide polymorphism in the first intron of the human IFN-gamma gene: absolute correlation with a polymorphic CA microsatellite marker of high IFN-gamma production. Hum Immunol 61:863–866PubMedCrossRefGoogle Scholar
  89. Prosch S, Staak K, Stein J, Liebenthal C, Stamminger T, Volk HD, Kruger DH (1995) Stimulation of the Human cytomegalovirus IE enhancer/promoter in HL-60 cells by TNFalpha is mediated via induction of NF-kappaB. Virology 208:197–206. doi: 10.1006/viro.1995.1143 PubMedCrossRefGoogle Scholar
  90. Rajilic-Stojanovic M, Heilig HG, Molenaar D, Kajander K, Surakka A, Smidt H, de Vos WM (2009) Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol 11:1736–1751. doi: 10.1111/j.1462-2920.2009.01900.x PubMedCentralPubMedCrossRefGoogle Scholar
  91. Ren Z et al (2009) Effect of age on susceptibility to Salmonella Typhimurium infection in C57BL/6 mice. J Med Microbiol 58:1559–1567. doi: 10.1099/jmm.0.013250-0 PubMedCentralPubMedCrossRefGoogle Scholar
  92. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371:569–578. doi: 10.1016/S0140-6736(08)60269-X PubMedCrossRefGoogle Scholar
  93. Renshaw M, Rockwell J, Engleman C, Gewirtz A, Katz J, Sambhara S (2002) Cutting edge: impaired Toll-like receptor expression and function in aging. J Immunol 169:4697–4701PubMedCrossRefGoogle Scholar
  94. Sarzi-Puttini P, Atzeni F, Doria A, Iaccarino L, Turiel M (2005) Tumor necrosis factor-alpha, biologic agents and cardiovascular risk. Lupus 14:780–784PubMedCrossRefGoogle Scholar
  95. Saurwein-Teissl M et al (2002) Lack of antibody production following immunization in old age: association with CD8(+)CD28(−) T cell clonal expansions and an imbalance in the production of Th1 and Th2 cytokines. J Immunol 168:5893–5899PubMedCrossRefGoogle Scholar
  96. Sayegh CE, Quong MW, Agata Y, Murre C (2003) E-proteins directly regulate expression of activation-induced deaminase in mature B cells. Nat Immunol 4:586–593PubMedCrossRefGoogle Scholar
  97. Schmidt D, Goronzy JJ, Weyand CM (1996) CD4+ CD7-CD28-T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. J Clin Investig 97:2027–2037. doi: 10.1172/JCI118638 PubMedCentralPubMedCrossRefGoogle Scholar
  98. Setty AR, Curhan G, Choi HK (2007) Obesity, waist circumference, weight change, and the risk of psoriasis in women: Nurses’ Health Study II. Arch Intern Med 167:1670–1675. doi: 10.1001/archinte.167.15.1670 PubMedCrossRefGoogle Scholar
  99. Shembade N, Ma A, Harhaj EW (2010) Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327:1135–1139. doi: 10.1126/science.1182364 PubMedCentralPubMedCrossRefGoogle Scholar
  100. Shi Y, Yamazaki T, Okubo Y, Uehara Y, Sugane K, Agematsu K (2005) Regulation of aged humoral immune defense against pneumococcal bacteria by IgM memory B cell. J Immunol 175:3262–3267PubMedCrossRefGoogle Scholar
  101. Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Investig 116:1793–1801. doi: 10.1172/JCI29069 PubMedCentralPubMedCrossRefGoogle Scholar
  102. Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42:717–727. doi: 10.1016/j.ejca.2006.01.003 PubMedCrossRefGoogle Scholar
  103. Sikora E, Arendt T, Bennett M, Narita M (2011) Impact of cellular senescence signature on ageing research. Ageing Res Rev 10:146–152. doi: 10.1016/j.arr.2010.10.002 PubMedCrossRefGoogle Scholar
  104. Smithey MJ, Li G, Venturi V, Davenport MP, Nikolich-Zugich J (2012) Lifelong persistent viral infection alters the naive T cell pool, impairing CD8 T cell immunity in late life. J Immunol 189:5356–5366. doi: 10.4049/jimmunol.1201867 PubMedCentralPubMedCrossRefGoogle Scholar
  105. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL (2013) Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Investig 123:966–972. doi: 10.1172/JCI64098 PubMedCentralPubMedCrossRefGoogle Scholar
  106. Trzonkowski P et al (2003) Association between Cytomegalovirus infection, enhanced proinflammatory response and low level of anti-hemagglutinins during the anti-influenza vaccination—an impact of immunosenescence. Vaccine 21:3826–3836PubMedCrossRefGoogle Scholar
  107. Vallejo AN (2005) CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev 205:158–169. doi: 10.1111/j.0105-2896.2005.00256.x PubMedCrossRefGoogle Scholar
  108. Vallejo AN, Weyand CM, Goronzy JJ (2004) T-cell senescence: a culprit of immune abnormalities in chronic inflammation and persistent infection. Trends Mol Med 10:119–124. doi: 10.1016/j.molmed.2004.01.002 PubMedCrossRefGoogle Scholar
  109. van Duin D et al (2007a) Prevaccine determination of the expression of costimulatory B7 molecules in activated monocytes predicts influenza vaccine responses in young and older adults. J Infect Dis 195:1590–1597. doi: 10.1086/516788 PubMedCrossRefGoogle Scholar
  110. van Duin D et al (2007b) Age-associated defect in human TLR-1/2 function. J Immunol 178:970–975PubMedCrossRefGoogle Scholar
  111. Wojciechowski W et al (2009) Cytokine-producing effector B cells regulate type 2 immunity to H. polygyrus. Immunity 30:421–433PubMedCentralPubMedCrossRefGoogle Scholar
  112. Woodmansey EJ, McMurdo ME, Macfarlane GT, Macfarlane S (2004) Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microbiol 70:6113–6122. doi: 10.1128/AEM.70.10.6113-6122.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  113. Zhang X, Nakajima T, Goronzy JJ, Weyand CM (2005) Tissue trafficking patterns of effector memory CD4+ T cells in rheumatoid arthritis. Arthritis Rheum 52:3839–3849. doi: 10.1002/art.21482 PubMedCrossRefGoogle Scholar
  114. Zhang Q et al (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107. doi: 10.1038/nature08780 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyUniversity of Miami Miller School of MedicineMiamiUSA

Personalised recommendations