Skip to main content
Log in

Development- and age-related alterations in the expression of AMPA receptor subunit GluR2 and its trafficking proteins in the hippocampus of male mouse brain

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

AMPA type glutamate receptor (AMPAR) on the post synaptic membrane plays important role in the process of synaptic plasticity involving various scaffolding and trafficking proteins. However, their alterations during development- and aging are not well understood. Here, we report that the expression of AMPAR-GluR2 subunit is gradually up regulated in the hippocampus from 0 day to adult (20 week) and down regulated thereafter in 70 week old male mice. This pattern of GluR2 during development (0-, 7- and 15 day), maturation (45 day) and adult age resembles with similar expression pattern of the scaffolding protein PSD95. Expression pattern of Stargazin (TARPγ-2) largely follows almost similar pattern up to adult age but is up regulated in old age. Pattern of PICK1 expression, however, is opposite to our GluR2 data till adult age but its expression is significantly down regulated in old age. Our data on alterations in the expression of GluR2 in the hippocampus during development and aging indicates a high- and low positive correlations with PSD95 and Stargazin, respectively whereas negative correlation with PICK1 except in old age where expression of Stargazin is higher and that of PICK1 is lower. Our findings suggest that increasing expression pattern of GluR2 during developmental periods and at adult age may be associated with achieving cognitive abilities whereas its low expression in old age may be linked with cognitive decline and proteins like PSD95, Stargazin and PICK1 might be differentially associated with development- and age-dependent alterations in AMPAR-dependent synaptic plasticity and hence learning and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcantara-Gonzalez F, Juarez I, Solis O, Martinez-Tellez I, Camacho-Abrego I, Masliah E, Mena R, Flores G (2010) Enhanced dendritic spine number of neurons of the prefrontal cortex, hippocampus, and nucleus accumbens in old rats after chronic donepezil administration. Synapse 64:786–793

    PubMed Central  CAS  PubMed  Google Scholar 

  • Andreano JM, Cahill L (2009) Sex influences on the neurobiology of learning and memory. Learn Mem 16:248–266

    Article  PubMed  Google Scholar 

  • Anggono V, Huganir RL (2012) Regulation of AMPA receptor trafficking and synaptic plasticity. Curr Opin Neurobiol 22:461–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bassani S, Folci A, Zapata J, Passafaro M (2013) AMPAR trafficking in synapse maturation and plasticity. Cell Mol Life Sci 70:4411–4430

    Article  CAS  PubMed  Google Scholar 

  • Bats C, Groc L, Choquet D (2007) The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53:719–734

    Article  CAS  PubMed  Google Scholar 

  • Bhatt DH, Zhang S, Gan WB (2009) Dendritic spine dynamics. Annu Rev Physiol 71:261–282

    Article  CAS  PubMed  Google Scholar 

  • Billard JM (2006) Ageing, hippocampal synaptic activity and magnesium. Magnes Res 19:199–215

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Burke SN, Barnes CA (2006) Neural plasticity in the ageing brain. Nat Rev Neurosci 7:30–40

    Article  CAS  PubMed  Google Scholar 

  • Chetkovich DM, Chen L, Stocker TJ, Nicoll RA, Bredt DS (2002) Phosphorylation of the post synaptic density-95 (PSD-95)/discs large/zona occludens-1 binding site of stargazin regulates binding to PSD-95 and synaptic targeting of AMPA receptors. J Neurosci 22:5791–5796

    CAS  PubMed  Google Scholar 

  • Cohen S, Greenberg ME (2008) Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu Rev Cell Dev Biol 24:183–209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duan H, Wearne SL, Rocher AB, Macedo A, Morrison JH, Hof PR (2003) Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex 13:950–961

    Article  PubMed  Google Scholar 

  • Ehrlich I, Klein M, Rumpel S, Malinow R (2007) PSD-95 is required for activity-driven synapse stabilization. Proc Natl Acad Sci USA 104:4176–4181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elias GM, Elias LA, Apostolides PF, Kriegstein AR, Nicoll RA (2008) Differential trafficking of AMPA and NMDA receptors by SAP102 and PSD-95 underlies synapse development. Proc Natl Acad Sci USA 105:20953–20958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaur P, Prasad S (2014) Alterations in the Sp1 binding and Fmr-1 gene expression in the cortex of the brain during maturation and aging of mouse. Mol Biol Rep 41:6855–6863

    Article  CAS  PubMed  Google Scholar 

  • Greger IH, Khatri L, Ziff EB (2002) RNA editing at arg607 controls AMPA receptor exit from the endoplasmic reticulum. Neuron 34:759–772

    Article  CAS  PubMed  Google Scholar 

  • Gupta RK, Prasad S (2013) Early down regulation of the glial Kir4.1 and GLT-1 expression in pericontusional cortex of the old male mice subjected to traumatic brain injury. Biogerontology 14:531–541

    Article  CAS  PubMed  Google Scholar 

  • Haering SC, Tapken D, Pahl S, Hollmann M (2014) Auxiliary subunits: shepherding AMPA receptors to the plasma membrane. Membranes 4:469–490

    Article  PubMed Central  PubMed  Google Scholar 

  • Haider S, Saleem S, Perveen T, Tabassum S, Batool Z, Sadir S, Liaquat L, Madiha S (2014) Age-related learning and memory deficits in rats: role of altered brain neurotransmitters, acetylcholinesterase activity and changes in antioxidant defense system. Age (Dordr) 36:9653

    Article  Google Scholar 

  • Hamada S, Ogawa I, Yamasaki M, Kiyama Y, Kassai H, Watabe AM, Nakao K, Aiba A, Watanabe M, Manabe T (2014) The glutamate receptor GluN2 subunit regulates synaptic trafficking of AMPA receptors in the neonatal mouse brain. Eur J Neurosci 40:3136–3146

    Article  PubMed  Google Scholar 

  • Hanse E, Seth H, Riebe I (2013) AMPA-silent synapses in brain development and pathology. Nat Rev Neurosci 14:839–850

    Article  CAS  PubMed  Google Scholar 

  • Henley JM, Wilkinson KA (2013) AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. Dialogues Clin Neurosci 15:11–27

    PubMed Central  PubMed  Google Scholar 

  • Hsia AY, Malenka RC, Nicoll RA (1998) Development of excitatory circuitry in the hippocampus. J Neurophysiol 79:2013–2024

    CAS  PubMed  Google Scholar 

  • Johnson MH (2003) Development of human brain functions. Biol Psychiatry 54:1312–1316

    Article  PubMed  Google Scholar 

  • Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260:95–97

    Article  CAS  PubMed  Google Scholar 

  • Kreutz M, König I, Mikhaylova M, Spilker C, Zuschratter W (2008) Molecular mechanisms of dendritic spine plasticity in development and aging. In: Lajtha A, Perez-Polo R, Rossner S (eds) Handbook of neurochemistry and molecular neurobiology: development and aging changes in the nervous system. Springer, New York, pp 245–259

    Chapter  Google Scholar 

  • Kumar A (2011) Long-term potentiation at CA3-CA1 hippocampal synapses with special emphasis on aging, disease, and stress. Front Aging Neurosci 3:7

    Article  PubMed Central  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lauder JM (1993) Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neurosci 16:233–240

    Article  CAS  PubMed  Google Scholar 

  • Ling W, Chang L, Song Y, Lu T, Jiang Y, Li Y, Wu Y (2011) Immunolocalization of NR1, NR2A, and PSD-95 in rat hippocampal subregions during postnatal development. Acta Histochem 113:11

    Google Scholar 

  • Liu J, Head E, Gharib AM, Yuan W, Ingersoll RT, Hagen TM, Cotman CW, Ames BN (2002) Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha—lipoic acid. Proc Natl Acad Sci USA 99:2356–2361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lohmann C, Kessels HW (2014) The developmental stages of synaptic plasticity. J Physiol 592:13–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Megias M, Emri Z, Freund TF, Gulyas AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102:527–540

    Article  CAS  PubMed  Google Scholar 

  • Milstein AD, Nicoll RA (2009) TARP modulation of synaptic AMPA receptor trafficking and gating depends on multiple intracellular domains. Proc Natl Acad Sci USA 106:11348–11351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miyazaki T, Kunii M, Tada H, Sano A, Kuroiwa Y, Goto T, Malinow R, Takahashi T (2012) Developmental AMPA receptor subunit specificity during experience-driven synaptic plasticity in the rat barrel cortex. Brain Res 1435:1–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mostany R, Anstey JE, Crump KL, Maco B, Knott G, Portera-Cailliau C (2013) Altered synaptic dynamics during normal brain aging. J Neurosci 33:4094–4104

    Article  CAS  PubMed  Google Scholar 

  • Murphy KM, Tcharnaia L, Beshara SP, Jones DG (2012) Cortical development of AMPA receptor trafficking proteins. Front Mol Neurosci 5:65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Opazo P, Labrecque S, Tigaret CM, Frouin A, Wiseman PW, De Koninck P, Choquet D (2010) CaMKII triggers the diffusional trapping of surface AMPARs through phosphorylation of stargazin. Neuron 67:239–252

    Article  CAS  PubMed  Google Scholar 

  • Petralia RS, Sans N, Wang YX, Wenthold RJ (2005) Ontogeny of post synaptic density proteins at glutamatergic synapses. Mol Cell Neurosci 29:436–452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pickard L, Noel J, Henley JM, Collingridge GL, Molnar E (2000) Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J Neurosci 20:7922–7931

    CAS  PubMed  Google Scholar 

  • Prasad S, Singh K (2014) Testosterone down regulates the expression of Fmr-1 gene in the cerebral cortex of gonadectomized old male mice. Biogerontology 15:503–515

    Article  CAS  PubMed  Google Scholar 

  • Rocca DL, Martin S, Jenkins EL, Hanley JG (2008) Inhibition of Arp2/3-mediated actin polymerization by PICK1 regulates neuronal morphology and AMPA receptor endocytosis. Nat Cell Biol 10:259–271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosenzweig ES, Barnes CA (2003) Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog Neurobiol 69:143–179

    Article  CAS  PubMed  Google Scholar 

  • Santos SD, Carvalho AL, Caldeira MV, Duarte CB (2009) Regulation of AMPA receptors and synaptic plasticity. Neuroscience 158:105–125

    Article  CAS  PubMed  Google Scholar 

  • Schwenk J, Baehrens D, Haupt A, Bildl W, Boudkkazi S, Roeper J, Fakler B, Schulte U (2014) Regional diversity and developmental dynamics of the AMPA-receptor proteome in the mammalian brain. Neuron 84:41–54

    Article  CAS  PubMed  Google Scholar 

  • Seidenman KJ, Steinberg JP, Huganir R, Malinow R (2003) Glutamate receptor subunit 2 Serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J Neurosci 23:9220–9228

    CAS  PubMed  Google Scholar 

  • Seifert G, Zhou M, Steinhauser C (1997) Analysis of AMPA receptor properties during postnatal development of mouse hippocampal astrocytes. J Neurophysiol 78:2916–2923

    CAS  PubMed  Google Scholar 

  • Semenov A, Moykkynen T, Coleman SK, Korpi ER, Keinanen K (2012) Autoinactivation of the stargazin–AMPA receptor complex: subunit-dependency and independence from physical dissociation. PLoS One 7:e49282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh P, Thakur M (2014) Reduced recognition memory is correlated with decrease in DNA methyltransferase1 and increase in histone deacetylase2 protein expression in old male mice. Biogerontology 15:339–346

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Gaur P, Prasad S (2007) Fragile x mental retardation (Fmr-1) gene expression is down regulated in brain of mice during aging. Mol Biol Rep 34:173–181

    Article  CAS  PubMed  Google Scholar 

  • Teleb AA, Al Awamleh AA (2012) Gender differences in cognitive abilities. Curr Res Psychol 3:33–39

    Article  Google Scholar 

  • Tocco G, Annala AJ, Baudry M, Thompson RF (1992) Learning of a hippocampal-dependent conditioning task changes the binding properties of AMPA receptors in rabbit hippocampus. Behav Neural Biol 58:222–231

    Article  CAS  PubMed  Google Scholar 

  • Tomita S, Chen L, Kawasaki Y, Petralia RS, Wenthold RJ, Nicoll RA, Bredt DS (2003) Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J Cell Biol 161:805–816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomita S, Byrd RK, Rouach N, Bellone C, Venegas A, O’Brien JL, Kim KS, Olsen O, Nicoll RA, Bredt DS (2007) AMPA receptors and stargazin-like transmembrane AMPA receptor-regulatory proteins mediate hippocampal kainate neurotoxicity. Proc Natl Acad Sci USA 104:18784–18788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu J, Xia J (2006) Structure and function of PICK1. Neurosignals 15:190–201

    Article  CAS  PubMed  Google Scholar 

  • Ye GL, Song Liu X, Pasternak JF, Trommer BL (2000) Maturation of glutamatergic neurotransmission in dentate gyrus granule cells. Brain Res Dev Brain Res 124:33–42

    Article  CAS  PubMed  Google Scholar 

  • Yu DF, Wu PF, Fu H, Cheng J, Yang YJ, Chen T, Long LH, Chen JG, Wang F (2011) Aging-related alterations in the expression and distribution of GluR2 and PICK1 in the rat hippocampus. Neurosci Lett 497:42–45

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

SPP and RR thank UGC for RFSMS fellowship, and PG is thankful to CAS Program in Zoology, Banaras Hindu University for Junior Research Fellowships. Financial assistance from Council for Scientific and Industrial Research, Govt. of India (37/1389/09/EMR-II) Department of Atomic Energy, Govt. of India (2009/37/55/3298) and Indian Council of Medical Research, Govt. of India (54/11/CPF/11-NCD-II) to SP is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S.P., Rai, R., Gaur, P. et al. Development- and age-related alterations in the expression of AMPA receptor subunit GluR2 and its trafficking proteins in the hippocampus of male mouse brain. Biogerontology 16, 317–328 (2015). https://doi.org/10.1007/s10522-014-9548-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-014-9548-6

Keywords

Navigation