Advertisement

Biogerontology

, Volume 15, Issue 3, pp 279–288 | Cite as

Age-dependent changes of nuclear morphology are uncoupled from longevity in Caenorhabditis elegans IGF/insulin receptor daf-2 mutants

  • Mercedes M. Pérez-Jiménez
  • María Jesús Rodríguez-Palero
  • Eduardo Ródenas
  • Peter AskjaerEmail author
  • Manuel J. MuñozEmail author
Research Article

Abstract

Nuclear envelope (NE) architecture and aging have been associated since the discovery that certain human progeria diseases are due to perturbations in processing of lamin A protein, generating alterations in NE morphology. However, whether changes in the NE are a causal effect of normal and premature aging is still controversial. Caenorhabditis elegans is a model organism where observations supporting both, dependent and independent roles of nuclear architecture in the aging process, have been reported. We found that the long-lived glp-1 mutant and dietary restriction delayed age-associated nuclear morphology changes. In addition, we observed that the long-lived mutant of the insulin/IGF receptor daf-2 delayed the age-dependent changes of nuclear architecture at 25 °C, as previously described. However, when daf-2 animals were incubated at 20 °C they remained long-lived, but nuclear appearance changed at similar rate as in the wild type. This supports the idea that both phenotypes, longevity and maintenance of nuclear architecture are tightly associated but can be separated and argues that nuclear morphology deterioration is not a cause of the natural aging process.

Keywords

Aging Dietary restriction daf-2 IGF/insulin receptor Nuclear lamina Progeria 

Notes

Acknowledgements

We wish to thank Y. Gruenbaum for the PD4810 strain and J. Rueda-Carrasco for technical assistance as well as M. Artal-Sanz, A.M. Brokate-Llanos and A. Miranda-Vizuete for discussion on the manuscript. This work was funded by the Autonomous Government of Andalusia (P07-CVI-02697). In addition, we wish to acknowledge Fundación Ramón Areces for a fellowship to ER. Some nematode strains used in this work were provided by the “Caenorhabditis Genetic Center”, which is funded by the NIH National Center for Research Resources (NCRR).

Supplementary material

10522_2014_9497_MOESM1_ESM.tif (1.4 mb)
Supplementary material 1 (TIFF 1449 kb)

References

  1. Ahearn IM, Haigis K, Bar-Sagi D, Philips MR (2012) Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol 13(1):39–51. doi: 10.1038/nrm3255 CrossRefGoogle Scholar
  2. Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C (2002) Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295(5554):502–505. doi: 10.1126/science.1065768 PubMedCrossRefGoogle Scholar
  3. Bar DZ, Gruenbaum Y (2010) Reversal of age-dependent nuclear morphology by inhibition of prenylation does not affect lifespan in Caenorhabditis elegans. Nucleus 1(6):499–505. doi: 10.4161/nucl.1.6.13223 PubMedCentralPubMedGoogle Scholar
  4. Bar DZ, Neufeld E, Feinstein N, Gruenbaum Y (2009) Gliotoxin reverses age-dependent nuclear morphology phenotypes, ameliorates motility, but fails to affect lifespan of adult Caenorhabditis elegans. Cell Motil Cytoskelet 66(10):791–797. doi: 10.1002/cm.20347 CrossRefGoogle Scholar
  5. Chen D, Thomas EL, Kapahi P (2009) HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans. PLoS Genet 5(5):e1000486. doi: 10.1371/journal.pgen.1000486 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehnke M, Glover TW, Collins FS (2003) Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423(6937):293–298. doi: 10.1038/nature01629 PubMedCrossRefGoogle Scholar
  7. Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King KV, Edgley ML, Larsen PL, Riddle DL (1998) Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 150(1):129–155PubMedCentralPubMedGoogle Scholar
  8. Gordon LB, Kleinman ME, Miller DT, Neuberg DS, Giobbie-Hurder A, Gerhard-Herman M, Smoot LB, Gordon CM, Cleveland R, Snyder BD, Fligor B, Bishop WR, Statkevich P, Regen A, Sonis A, Riley S, Ploski C, Correia A, Quinn N, Ullrich NJ, Nazarian A, Liang MG, Huh SY, Schwartzman A, Kieran MW (2012) Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci USA 109(41):16666–16671. doi: 10.1073/pnas.1202529109 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Haithcock E, Dayani Y, Neufeld E, Zahand AJ, Feinstein N, Mattout A, Gruenbaum Y, Liu J (2005) Age-related changes of nuclear architecture in Caenorhabditis elegans. Proc Natl Acad Sci USA 102(46):16690–16695PubMedCentralPubMedCrossRefGoogle Scholar
  10. Kenyon CJ (2010) The genetics of ageing. Nature 464(7288):504–512. doi: 10.1038/nature08980 PubMedCrossRefGoogle Scholar
  11. Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278(5341):1319–1322PubMedCrossRefGoogle Scholar
  12. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389(6654):994–999. doi: 10.1038/40194 PubMedCrossRefGoogle Scholar
  13. Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G (1999) A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 13(11):1438–1452PubMedCentralPubMedCrossRefGoogle Scholar
  14. Puente XS, Quesada V, Osorio FG, Cabanillas R, Cadinanos J, Fraile JM, Ordonez GR, Puente DA, Gutierrez-Fernandez A, Fanjul-Fernandez M, Levy N, Freije JM, Lopez-Otin C (2011) Exome sequencing and functional analysis identifies BANF1 mutation as the cause of a hereditary progeroid syndrome. Am J Hum Genet 88(5):650–656. doi: 10.1016/j.ajhg.2011.04.010 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Raz V, Vermolen BJ, Garini Y, Onderwater JJ, Mommaas-Kienhuis MA, Koster AJ, Young IT, Tanke H, Dirks RW (2008) The nuclear lamina promotes telomere aggregation and centromere peripheral localization during senescence of human mesenchymal stem cells. J Cell Sci 121(Pt 24):4018–4028. doi: 10.1242/jcs.034876 PubMedCrossRefGoogle Scholar
  16. Reddy S, Comai L (2012) Lamin A, farnesylation and aging. Exp Cell Res 318(1):1–7. doi: 10.1016/j.yexcr.2011.08.009 PubMedCrossRefGoogle Scholar
  17. Righolt CH, van ‘t Hoff ML, Vermolen BJ, Young IT, Raz V (2011) Robust nuclear lamina-based cell classification of aging and senescent cells. Aging (Albany NY) 3(12):1192–1201Google Scholar
  18. Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312(5776):1059–1063. doi: 10.1126/science.1127168 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Stiernagle T (2006) Maintenance of C. elegans. WormBook:1–11. doi: 10.1895/wormbook.1.101.1
  20. Varela I, Cadinanos J, Pendas AM, Gutierrez-Fernandez A, Folgueras AR, Sanchez LM, Zhou Z, Rodriguez FJ, Stewart CL, Vega JA, Tryggvason K, Freije JM, Lopez-Otin C (2005) Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437(7058):564–568. doi: 10.1038/nature04019 PubMedCrossRefGoogle Scholar
  21. Wolkow CA, Munoz MJ, Riddle DL, Ruvkun G (2002) Insulin receptor substrate and p55 orthologous adaptor proteins function in the Caenorhabditis elegans daf-2/insulin-like signaling pathway. J Biol Chem 277(51):49591–49597. doi: 10.1074/jbc.M207866200 PubMedCrossRefGoogle Scholar
  22. Worman HJ (2012) Nuclear lamins and laminopathies. J Pathol 226(2):316–325. doi: 10.1002/path.2999 PubMedCrossRefGoogle Scholar
  23. Yang SH, Bergo MO, Toth JI, Qiao X, Hu Y, Sandoval S, Meta M, Bendale P, Gelb MH, Young SG, Fong LG (2005) Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson–Gilford progeria syndrome mutation. Proc Natl Acad Sci USA 102(29):10291–10296. doi: 10.1073/pnas.0504641102 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Mercedes M. Pérez-Jiménez
    • 1
  • María Jesús Rodríguez-Palero
    • 1
  • Eduardo Ródenas
    • 1
  • Peter Askjaer
    • 1
    Email author
  • Manuel J. Muñoz
    • 1
    Email author
  1. 1.Centro Andaluz de Biología del Desarrollo (CABD)Consejo Superior de Investigaciones Científicas – Universidad Pablo de Olavide – Junta de AndalucíaSevilleSpain

Personalised recommendations