Biogerontology

, Volume 15, Issue 2, pp 165–176 | Cite as

Cell proliferation arrest and redox state status as part of different stages during senescence establishment in mouse fibroblasts

  • Francisco Triana-Martínez
  • Norma E. López-Diazguerrero
  • Luis A. Maciel-Barón
  • Sandra L. Morales-Rosales
  • Sonia Galván-Arzate
  • Francisco J. Fernandez-Perrino
  • Alejandro Zentella
  • Viviana I. Pérez
  • Luis E. Gomez-Quiroz
  • Mina Königsberg
Research Article

Abstract

Senescence phenotype can be achieved by multiple pathways. Most of them involve the activation of negative cell cycle regulators as well as a shift to an oxidative status. However, the exact participation of these events in senescence establishment and maintenance is not completely understood. In this study we investigated the content of three final cell cycle regulators, as well as the redox state in some critical points during the pre-senescent and the full-senescent states. Our results highlight the existence of a critical pre-phase in senescent phenotype establishment, in which cell proliferation stops with the participation of the cell cycle inhibitors, and a second maintenance stage where the exacerbated pro-oxidant state inside the cell induces the physiological decline characteristic in senescent cells.

Keywords

Senescence P16 P21 P27 Oxidative stress Cell cycle 

Notes

Acknowledgments

The authors would like to thank Dr. A. Hernández from CINVESTAV for generously donating us the actin antibody. Dr. Rocío González-Vieira from UAM-I for animal supply. This work was supported by CONACyT’s grants CB-2006-1-59659 and CB-2012-1-178349. As well as the “Red Temática de Investigación en Salud y Desarrollo Social” from CONACYT. Triana-Martínez and Maciel-Barón are CONACYT scholarship holders.

References

  1. Ahmed EK, Rogowska-Wrzesinska A, Roepstorff P, Bulteau AL, Friguet B (2010) Protein modification and replicative senescence of WI-38 human embryonic fibroblasts. Aging Cell 9:252–272. doi: 10.1111/j.1474-9726.2010.00555.x PubMedCrossRefGoogle Scholar
  2. Alarcón-Aguilar A, González-Puertos VY, Luna–López A, Morán J, Santamaría A, Königsberg M (2013) Comparing the effects of two neurotoxins in cortical astrocytes from newborn and adult rats: involvement of oxidative damage. J Appl Toxicol. doi: 10.1002/jat.2841 Google Scholar
  3. Atamna H, Paler-Martínez A, Ames BN (2000) N-t-Butyl hydroxylamine, a hydrolysis product of -phenyl-N-t-butyl nitrone, is more potent in delaying senescence in human lung fibroblasts. J Biol Chem 275:6741–6748. doi: 10.1074/jbc.275.10.6741 PubMedCrossRefGoogle Scholar
  4. Atamna H, Robinson C, Ingersoll R, Elliott H, Ames BN (2001) N-t-Butyl hydroxylamine is an antioxidant that reverses age-related changes in mitochondria in vivo and in vitro. FASEB J 15:2196–2204. doi: 10.1096/fj.01-0134com PubMedCrossRefGoogle Scholar
  5. Baraibar MA, Ladouce R, Friguet B (2013) Proteomic quantification and identification of carbonylated proteins upon oxidative stress and during cellular aging. J Proteomics S1874–3919(13):00249-2. doi: 10.1016/j.jprot.2013.05.008 Google Scholar
  6. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LV, Kolettas E, Niforou K, Zoumpourlis VC, Takaoka M, Nakagawa H, Tort F, Fugger K, Johansson F, Sehested M, Andersen CL, Dyrskjot L, Orntoft T, Lukas J, Kittas C, Helleday T, Halazonetis TD, Bartek J, Gorgoulis G (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–637. doi: 1038/nature05268 PubMedCrossRefGoogle Scholar
  7. Bitto A, Sell Crowe, Lorenzini A, Malaguti M, Hrelia S, Torres C (2010) Stress-induced senescence in human and rodent astrocytes. Exp Cell Res 316:2961–2968. doi: 10.1016/j.yexcr.2010.06.021 PubMedCrossRefGoogle Scholar
  8. Blazer S, Khankin E, Segev Y, Ofir R, Yalon-Hacohen M, Kra-Oz Z, Gottfried Y, Larisch S, Skorecki KL (2002) High glucose-induced replicative senescence: point of no return and effect of telomerase. Biochem Biophys Res Commun 296:93–101PubMedCrossRefGoogle Scholar
  9. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  10. Burhans W, Heintz N (2009) The cell cycle is a redox cycle: linking phase-specific targets to cell fate. Free Rad Bio Med 47:1282–1293. doi: 10.1016/j.freeradbiomed.2009.05.026 CrossRefGoogle Scholar
  11. Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522. doi: 10.1016/j.cell.2005.02.003 PubMedCrossRefGoogle Scholar
  12. Chen Q, Fischer A, Reagan JD, Yan L-J, Ames BN (1995) Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA 92:4337–4341PubMedCentralPubMedCrossRefGoogle Scholar
  13. Chen J-H, Ozanne SE, Hales CN (2005) Heterogeneity in premature senescence by oxidative stress correlates with differential DNA damage during cell cycle. DNA Repair 4:1140–1148. doi: 10.1016/j.dnarep.2005.06.003 PubMedCrossRefGoogle Scholar
  14. Coppé JP, Patil CK, Rodier F, Krtolica A, Beausejour CM, Parrinello S, Hodgson JG, Chin K, Desprez PI, Campisi J (2010) A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One 5(2):e9188. doi: 10.1371/journal.pone.0009188 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Davalos AR, Coppé JP, Campisi J, Desprez PY (2010) Senescent cells as a source of inflammatory factors for tumor progression. Can Met Rev 29:273–283. doi: 10.1007/s10555-010-9220-9 CrossRefGoogle Scholar
  16. Demidenko ZN, Blagosklonny MV (2009) Quantifying pharmacologic suppression of cellular senescence: prevention of cellular hypertrophy versus preservation of poroliferative potential. Aging 1:1008–1016. doi: 10.4161/cc.7.21.6919 PubMedCentralPubMedGoogle Scholar
  17. Dilley TK, Bowden GT, Chen QM (2003) Novel mechanisms of sublethal oxidant toxicity: induction of premature senescence in human fibroblasts confers tumor promoter activity. Exp Cell Res 290:38–48. doi: 10.1016/S0014-4827(03)00308-2 PubMedCrossRefGoogle Scholar
  18. Dillin A, Cohen E (2011) Ageing and protein aggregation-mediated disorders: from invertebrates to mammals. Phil Trans R Soc B 366:94–98. doi: 10.1098/rstb 2010.0271PubMedCentralPubMedCrossRefGoogle Scholar
  19. Dimri GP, Basile G, Acosta M, Scott G, Roskelley C, Medrano E, Linskens M, Rubeli I, Pereira-Smith O, Peacocke M (1995) A biomarker that identifies senescent human cells in culture and in ageing skin in vivo. Proc Natl Acad Sci USA 92:9362–9367CrossRefGoogle Scholar
  20. Fang Y, Yu S, Braley-Mullen H (2012) TGF-β promotes proliferation of thyroid epithelial cells in IFN-γ−/−mice by down-regulation of p21 and p27 via AKT pathway. Am J Pathol 180:650–660. doi: 10.1016/j.ajpath.2011.10.009 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Fridman A, Tainsky M (2008) Critical pathways in cellular senescence and immortalization revealed by gene expression profiling. Oncogene 0950-9232/08. doi:  10.1038/onc.2008.21
  22. Frippiat C, Chen QM, Remacle J, Toussaint O (2000) Cell cycle regulation in H2O2-induced premature senescence of human diploid fibroblasts and regulatory control exerted by the papilloma virus E6 and E7 proteins. Exp Gerontol 35:733–745. doi: 10.1016/S0531-5565(00)00167-4 PubMedCrossRefGoogle Scholar
  23. Fritsche M, Haessler C, Brandner G (1993) Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene 8:307–318PubMedGoogle Scholar
  24. Fumagalli M, D’Adda di Fagagna F (2009) SASPense and DDRama in cancer and ageing. Nature Cell Biol 11:921–923. doi: 10.1038/ncb0809-921 PubMedCrossRefGoogle Scholar
  25. Galván-Arzate S, Pedraza-Chaverrí J, Medina-Campos ON, Maldonado PD, Vázquez-Román B, Ríos C, Santamaría A (2005) Delayed effects of thallium in the rat brain: regional changes in lipid peroxidation and behavioral markers, but moderate alterations in antioxidants, after a single administration. Food Chem Toxicol 43:1037–1045. doi: 10.1016/j.fct.2005.02.006 PubMedCrossRefGoogle Scholar
  26. Gao Feng-Hou, Xiao-Hui Hu, Li Wei, Liu Hua, Zhang Yan-Jie, Guo Zhu-Ying, Mang-Hua Xu, Wang Shi-Ting, Jiang Bin, Liu Feng, Zhao Ying-Zheng, Fang Yong, Chen Fang-Yuan, Ying-Li Wu (2010) Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc. BMC Cancer 10:610. doi: 10.1186/1471-2407-10-610 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Gidalevitz T, Kikis EA, Morimoto RI (2010) A cellular perspective on conformational disease: the role of genetic background and proteostasis networks. Curr Opin Struc Biol 20:23–32. doi: 10.1016/j.sbi.2009.11.001 CrossRefGoogle Scholar
  28. Haendeler J, Hoffmann J, Diehl JF, Vasa M, Spyridopoulos I, Zeiher AM, Dimmeler S (2004) Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ Res 94:768–775. doi: 10.1161/01.RES.0000121104.05977.F3 PubMedCrossRefGoogle Scholar
  29. Harley CB (1991) Telomere loss: mitotic clock or genetic time bomb? Mutat Res 256:271–282. doi: 10.1038/345458a0 PubMedCrossRefGoogle Scholar
  30. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460PubMedCrossRefGoogle Scholar
  31. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300. doi: 10.1093/geronj/11.3.298 PubMedCrossRefGoogle Scholar
  32. Hayflick L (1965) The limited in in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636PubMedCrossRefGoogle Scholar
  33. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621PubMedCrossRefGoogle Scholar
  34. Jones DP, Mody VC Jr, Carlson JL, Lynn MJ, Sternberg P Jr (2002) Redox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses. Free Radic Biol Med 33:1290–1300. doi: 10.1016/S0891-5849(02)01040-7 PubMedCrossRefGoogle Scholar
  35. Kang HT, Lee KB, Kim SY, Choi HR, Park SC (2011) Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS One 6(8):e23367. doi: 10.1371/journal.pone.0023367 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Königsberg M, López-Diazguerrero NE, Rivera-Martinez LP, González-Puertos VY, González-Vieira R, Gutiérrez-Ruiz MC, Zentella A (2007) The physiological deterioration associated to breeding in female mice: a model for the study of senescence and aging. Comp Biochem Physiol A 146:695–701. doi: 10.1016/j.cbpa.2006.05.005 CrossRefGoogle Scholar
  37. Kurata S (2000) Selective activation of p38 mapk cascade and mitotic arrest caused by low level oxidative stress. J Biol Chem 275:23413–23416. doi: 10.1074/jbc.C000308200 PubMedCrossRefGoogle Scholar
  38. Kurz DJ, Decary S, Hong Y, Trivier E, Akhmedov A, Erusalimsky JD (2004) Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci 117:2417–2426. doi: 10.1242/jcs.01097 PubMedCrossRefGoogle Scholar
  39. Lechel A, Holstege H, Begus Y, Schienke A, Kamino K, Lehmann U, Kubicka S, Schirmacher P, Jonkers J, Rudolph KL (2007) Telomerase deletion limits progression of p53-mutant hepatocellular carcinoma with short telomeres in chronic liver disease. Gastroenterology 132:1465–1475. doi: 10.1053/j.gastro.2007.01.045 PubMedCrossRefGoogle Scholar
  40. López-Diazguerrero NE, López-Araiza H, Bucio L, Cárdenas MC, Ventura JL, Covarrubias L, Gutiérrez-Ruiz MC, Zentella A, Konigsberg M (2006) Bcl-2 protects against oxidative stress while inducing premature senescence. Free Rad Biol Med 40:1161–1169. doi: /10.1016/j.freeradbiomed.2005.11.002 PubMedCrossRefGoogle Scholar
  41. Macip S, Igarashi M, Fang L, Chen A, Pan ZQ, Lee SW, Aaronson SA (2002) Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J 21:2180–2188. doi: 10.1093/emboj/21.9.2180 PubMedCentralPubMedCrossRefGoogle Scholar
  42. McFarland GA, Holliday R (1994) Retardation of the senescence of cultured human diploid fibroblasts by carnosine. Exp Cell Res 212:167–175. doi: 10.1006/excr 1994.1132PubMedCrossRefGoogle Scholar
  43. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu J-R (1988) A highly conserved repetitive DNA sequence, (TTAGGG), present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85:6622–6626PubMedCentralPubMedCrossRefGoogle Scholar
  44. Muller M (2006) Premature cellular senescence induced by pyocyanin, a redox-active Pseudomonas aeruginosa toxin. Free Radic Biol Med 41:1670–1677. doi: 10.1016/jfreeradbiomed.2006.09.004 PubMedCrossRefGoogle Scholar
  45. Muller M (2009) Cellular senescence: molecular mechanisms, in vivo significance, and redox considerations. Antiox Redox Signal 11:60–98. doi: 10.1089/ars 2008.2104Google Scholar
  46. Nakayama K, Hatakeyama S, Nakayama K (2001) Regulation of the cell cycle at the G1–S transition by proteolysis of cyclin E and p27Kip1. Biochem Biophys Res Commun 282:853–860. doi: 10.1006/bbrc2001.4627 PubMedCrossRefGoogle Scholar
  47. Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5:741–747. doi: 10.1038/ncb1024 PubMedCrossRefGoogle Scholar
  48. Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, Birch- Machin MA, Kirkwood TBL, von Zglinicki T (2007a) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5(5):e110. doi: 10.1371/journal.pbio.0050110 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Passos JF, Saretzki G, von Zglinicki T (2007b) DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucl Acid Res 35:7505–7513. doi: 10.1093/nar/gkm893 CrossRefGoogle Scholar
  50. Richter T, von Zglinicki T (2007) A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp Gerontol 42:1039–1042. doi: 10.1016/j.exger.2007.08.005 PubMedCrossRefGoogle Scholar
  51. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556. doi: 10.1083/jcb.201009094 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Rodier F, Muñoz DP, Teachenor R, Chu V, Le O, Bhaumik D, Coppé JF, Campeau E, Beauséjour CM, Kim SH, Davalos AR, Campisi J (2011) DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci 124:68–81. doi: 10.1242/jcs.071340 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Shay JW, Pereira-Smith OM, Wright WE (1991) A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 196:33–39. doi: 10.1016/0014-4827(91)90453-2 PubMedCrossRefGoogle Scholar
  54. Sikora E, Arendt T, Bennettc M, Narita M (2011) Impact of cellular senescence signature on ageing research. Age Res Rev 10:146–152. doi: 10.1016/j.arr.2010.10.002 CrossRefGoogle Scholar
  55. Stein GH, Beeson M, Gordon L (1990) Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts. Science 249:666–669. doi: 10.1126/science.216634 PubMedCrossRefGoogle Scholar
  56. Stein GH, Drullinger LF, Robetorye RS, Pereira-Smith OM, Smith JR (1991) Senescent cells fail to express cdc2, cycA, and cycB in response to mitogen stimulation. Proc Natl Acad Sci USA 88:11012–11016PubMedCentralPubMedCrossRefGoogle Scholar
  57. Torres C, Lewis L, Cristofalo VJ (2006) Proteasome inhibitors shorten replicative life span and induce a senescent-like phenotype of human fibroblasts. J Cell Physiol 207:845–853. doi: 10.1002/jcp.20630 PubMedCrossRefGoogle Scholar
  58. Toussaint O, Medrano E, von Zglinicki T (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35:927–945. doi: 10.1016/S0531-5565(00)00180-7 PubMedCrossRefGoogle Scholar
  59. Vijg J, Campisi J (2008) Puzzles, promises and a cure for ageing. Nature 28:1065–1071. doi: 10.1038/nature07216 CrossRefGoogle Scholar
  60. von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344. doi: 10.1016/S0968-0004(02)02110-2 CrossRefGoogle Scholar
  61. von Zglinicki T, Saretzki G, Döcke W, Lotze C (1995) Mild hypoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 220:186–193. doi: 10.1006/excr1995.1305 CrossRefGoogle Scholar
  62. von Zglinicki T, Serra V, Lorenz M, Saretzki G, Lenzen- Grossimlighaus R, Gessner R, Risch A, Steinhagen-Thiessen E (2000) Short telomeres in patients with vascular dementia: an indicator of low antioxidative capacity and a possible risk factor? Lab Invest 80:1739–1747CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Francisco Triana-Martínez
    • 1
    • 2
  • Norma E. López-Diazguerrero
    • 1
  • Luis A. Maciel-Barón
    • 1
    • 2
  • Sandra L. Morales-Rosales
    • 1
  • Sonia Galván-Arzate
    • 3
  • Francisco J. Fernandez-Perrino
    • 4
  • Alejandro Zentella
    • 5
    • 6
  • Viviana I. Pérez
    • 7
  • Luis E. Gomez-Quiroz
    • 1
  • Mina Königsberg
    • 1
  1. 1.Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la SaludUniversidad Autónoma Metropolitana-IztapalapaMexicoMexico
  2. 2.Posgrado en Biologia ExperimentalMexico CityMexico
  3. 3.Dept. NeuroquímicaInstituto Nacional de Neurología y NeurocirugíaMexicoMexico
  4. 4.Dept. Biotecnología, DCBSUniversidad Autónoma Metropolitana IztapalapaMexicoMexico
  5. 5.Dept. Medicina Genómica y Toxicología Ambiental. IIBUNAMMexicoMexico
  6. 6.Depto BioquímicaINCMNSZMexicoMexico
  7. 7.Department of Biochemistry & BiophysicsOregon State UniversityCorvallisUSA

Personalised recommendations