, Volume 15, Issue 2, pp 113–127 | Cite as

The effects of pectins on life span and stress resistance in Drosophila melanogaster

  • Mikhail Shaposhnikov
  • Dmitrii Latkin
  • Ekaterina Plyusnina
  • Lyubov Shilova
  • Anton Danilov
  • Sergey Popov
  • Alexander Zhavoronkov
  • Yuri Ovodov
  • Alexey Moskalev
Research Article


The composition of diet is one of the major determining factors for lifespan. The dietary pectins are known to have anti-inflammatory properties and may influence aging and longevity. Here we demonstrate the lifespan-extending effect of the low methyl esterified (LM) commercial pectins CU701 and AU701 in wild-type strain of Drosophila melanogaster. The high methyl esterified (HM) pectin CU201 did not affect lifespan. LM pectin did not increase lifespan of males with a mutation in the Toll adaptor Myd88 gene and in both males and females with a mutation in the NF-κB ortholog Relish. LM pectin CU701 increased imagoes survival in stress conditions (oxidation, hyperthermia and starvation). However, the fertility of LM and HM pectins treated flies decreased. The treatment of the imagoes with LH and HM pectins induced the activation of whole-body expression of genes involved in DNA repair (D-GADD45, mei-9, spn-B), apoptosis (wrinkled/hid) and heat shock response (hsp70Aa). In contrast, the expression of proinflammatory PARP-1 gene decreased. In the intestines LH and HM pectins induced the mRNA expression of the NF-κB-dependent antimicrobial genes Defensin, Drosomycin and Metchnikowin. These results indicate that the observed lifespan-extending effect of the LM pectins may be mediated by intracellular pathways that involve NF-κB signalling and activation of stress resistance genes.


Drosophila melanogaster Pectins Lifespan NF-κB Anti-inflammatory activity 



We thank the anonymous reviewers for useful comments and suggestions. We are grateful to Drosophila Stock Center (Indiana University, Bloomington, Indiana, USA) for providing the D. melanogaster strains. The study was supported by grant from the Russian Foundation for Basic Research (11-04-12110-ofi-m-2011) and by the Programs of the Presidium of the Ural Branch of the RAS (grants # 12-П-4-1033 and 12-П-4-1023).

Supplementary material

10522_2013_9484_MOESM1_ESM.doc (2.4 mb)
Supplementary material 1 (DOC 2468 kb)


  1. Ajani UA, Ford ES, Mokdad AH (2004) Dietary fiber and C-reactive protein: findings from national health and nutrition examination survey data. J Nutr 134(5):1181–1185PubMedGoogle Scholar
  2. Chippindale AK, Leroi AM, Kim SB et al (1993) Phenotypic plasticity and selection in Drosophila life-history evolution. I. Nutrition and the cost of reproduction. J Evol Biol 6(2):171–193CrossRefGoogle Scholar
  3. Eliaz I, Hotchkiss AT, Fishman ML et al (2006) The effect of modified citrus pectin on urinary excretion of toxic elements. Phytother Res 20(10):859–864PubMedCrossRefGoogle Scholar
  4. Franceschi C, Bonafe M, Valensin S et al (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254PubMedCrossRefGoogle Scholar
  5. Goto A, Imler JL (2012) Toll signaling in flies and mammals: two sorts of MyD88. Immunity 36(4):555–557PubMedCrossRefGoogle Scholar
  6. Grandison RC, Piper MD, Partridge L (2009) Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462(7276):1061–1064PubMedCentralPubMedCrossRefGoogle Scholar
  7. Grillari J, Katinger H, Voglauer R (2007) Contributions of DNA interstrand cross-links to aging of cells and organisms. Nucleic Acids Res 35(22):7566–7576PubMedCentralPubMedCrossRefGoogle Scholar
  8. Imler JL, Bulet P (2005) Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem Immunol Allergy 86:1–21PubMedCrossRefGoogle Scholar
  9. Jafari M (2010) Drosophila melanogaster as a model system for the evaluation of anti-aging compounds. Fly (Austin) 4(3):253–257CrossRefGoogle Scholar
  10. Khotimchenko M, Kovalev V, Khotimchenko Y (2007) Equilibrium studies of sorption of lead(II) ions by different pectin compounds. J Hazard Mater 149(3):693–699PubMedCrossRefGoogle Scholar
  11. Khotimchenko MY, Khozhaenko EV, Kolenchenko EA et al (2012) Equilibrium studies of sorption of strontium ions by different pectin compounds. J Environ Sci Technol 5(5):319–331CrossRefGoogle Scholar
  12. Khush RS, Leulier F, Lemaitre B (2002) Immunology. Pathogen surveillance—the flies have it. Science 296(5566):273–275PubMedCrossRefGoogle Scholar
  13. Krebs RA, Feder ME (1997) Deleterious consequences of Hsp70 overexpression in Drosophila melanogaster larvae. Cell Stress Chaperones 2(1):60–71PubMedCentralPubMedCrossRefGoogle Scholar
  14. Le Bourg E, Valenti P, Payre F (2002) Lack of hypergravity-associated longevity extension in Drosophila melanogaster flies overexpressing hsp70. Biogerontology 3(6):355–364PubMedCrossRefGoogle Scholar
  15. Lee KP, Simpson SJ, Clissold FJ et al (2008) Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proc Natl Acad Sci USA 105(7):2498–2503PubMedCentralPubMedCrossRefGoogle Scholar
  16. Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743PubMedCrossRefGoogle Scholar
  17. Lemaitre B, Reichhart JM, Hoffmann JA (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA 94(26):14614–14619PubMedCentralPubMedCrossRefGoogle Scholar
  18. Liu L, Fishman ML, Hicks KB et al (2005) Interaction of various pectin formulations with porcine colonic tissues. Biomaterials 26(29):5907–5916PubMedCrossRefGoogle Scholar
  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC(T) method. Methods 25(4):402–408PubMedCrossRefGoogle Scholar
  20. Mair W, Piper MD, Partridge L (2005) Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol 3(7):e223PubMedCentralPubMedCrossRefGoogle Scholar
  21. Mangerich A, Herbach N, Hanf B et al (2010) Inflammatory and age-related pathologies in mice with ectopic expression of human PARP-1. Mech Ageing Dev 131(6):389–404PubMedCrossRefGoogle Scholar
  22. Marek LR, Kagan JC (2012) Phosphoinositide binding by the toll adaptor dMyD88 controls antibacterial responses in Drosophila. Immunity 36(4):612–622PubMedCentralPubMedCrossRefGoogle Scholar
  23. McCay CM, Maynard LA, Sperling G et al (1939) Retarded growth, life span, ultimate body size and age changes in the albino rat after feeding diets restricted in calories. J Nutr 18(1):1–13Google Scholar
  24. Minois N, Vaynberg S (2002) Fecundity and life span in transgenic Drosophila melanogaster overexpressing hsp70. Biogerontology 3(5):301–306PubMedCrossRefGoogle Scholar
  25. Moskalev A, Shaposhnikov M (2011) Pharmacological inhibition of NF-κB prolongs lifespan of Drosophila melanogaster. Aging (Albany NY) 3(4):391–394Google Scholar
  26. Moskalev A, Shaposhnikov M, Turysheva E (2009) Life span alteration after irradiation in Drosophila melanogaster strains with mutations of Hsf and Hsps. Biogerontology 10(1):3–11PubMedCrossRefGoogle Scholar
  27. Nesterenko VB, Nesterenko AV, Babenko VI et al (2004) Reducing the 137Cs-load in the organism of “Chernobyl” children with apple-pectin. Swiss Med Wkly 134(1–2):24–27PubMedGoogle Scholar
  28. Ovodova RG, Golovchenko VV, Popov SV et al (2009) Chemical composition and anti-inflammatory activity of pectic polysaccharide isolated from celery stalks. Food Chem 114(2):610–615CrossRefGoogle Scholar
  29. Pang ZJ, Chen Y, Zhou M (2000a) Polysaccharide Krestin enhances manganese superoxide dismutase activity and mRNA expression in mouse peritoneal macrophages. Am J Chin Med 28(3–4):331–341PubMedCrossRefGoogle Scholar
  30. Pang ZJ, Chen Y, Zhou M et al (2000b) Effect of polysaccharide krestin on glutathione peroxidase gene expression in mouse peritoneal macrophages. Br J Biomed Sci 57(2):130–136PubMedGoogle Scholar
  31. Partridge LD, Green A, Fowler K (1987) Effects of egg-production and of exposure to males on female survival in Drosophila melanogaster. J Insect Physiol 33(10):745–749CrossRefGoogle Scholar
  32. Plyusnina EN, Shaposhnikov MV, Moskalev AA (2011) Increase of Drosophila melanogaster lifespan due to D-GADD45 overexpression in the nervous system. Biogerontology 12(3):211–226PubMedCrossRefGoogle Scholar
  33. Popov SV, Popova GY, Ovodova RG et al (2005) Antiinflammatory activity of the pectic polysaccharide from Comarum palustre. Fitoterapia 76(3–4):281–287PubMedCrossRefGoogle Scholar
  34. Popov SV, Ovodova RG, Golovchenko VV et al (2011) Chemical composition and anti-inflammatory activity of a pectic polysaccharide isolated from sweet pepper using a simulated gastric medium. Food Chem 124(1):309–315CrossRefGoogle Scholar
  35. Popov SV, Markov PA, Popova GY et al (2013) Anti-inflammatory activity of low and high methoxylated citrus pectins. Biomed Prev Nutr 3(1):59–63CrossRefGoogle Scholar
  36. Ramberg JE, Nelson ED, Sinnott RA (2010) Immunomodulatory dietary polysaccharides: a systematic review of the literature. Nutr J 9:54PubMedCentralPubMedCrossRefGoogle Scholar
  37. Ren C, Webster P, Finkel SE et al (2007) Increased internal and external bacterial load during Drosophila aging without life-span trade-off. Cell Metab 6(2):144–152PubMedCrossRefGoogle Scholar
  38. Rodier F, Munoz DP, Teachenor R et al (2011) DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci 124(Pt 1):68–81PubMedCentralPubMedCrossRefGoogle Scholar
  39. Salminen A, Kauppinen A, Kaarniranta K (2012) Phytochemicals suppress nuclear factor-κB signaling: impact on health span and the aging process. Curr Opin Clin Nutr Metab Care 15(1):23–28PubMedCrossRefGoogle Scholar
  40. Semple F, Dorin JR (2012) β-Defensins: multifunctional modulators of infection, inflammation and more? J Innate Immun 4(4):337–348PubMedCrossRefGoogle Scholar
  41. Shaposhnikov MV, Moskalev AA, Plyusnina EN (2011) Effect of PARP-1 overexpression and pharmacological inhibition of NF-kB on the lifespan of Drosophila melanogaster. Adv Gerontol 24(3):405–419PubMedGoogle Scholar
  42. Sherry CL, Kim SS, Dilger RN et al (2010) Sickness behavior induced by endotoxin can be mitigated by the dietary soluble fiber, pectin, through up-regulation of IL-4 and Th2 polarization. Brain Behav Immun 24(4):631–640PubMedCentralPubMedCrossRefGoogle Scholar
  43. Sriamornsak P (2003) Chemistry of pectin and its pharmaceutical uses: a review. Silpakorn Univ Int J 3:206–228Google Scholar
  44. Tanji T, Yun EY, Ip YT (2010) Heterodimers of NF-κB transcription factors DIF and Relish regulate antimicrobial peptide genes in Drosophila. Proc Natl Acad Sci USA 107(33):14715–14720PubMedCentralPubMedCrossRefGoogle Scholar
  45. Thakur BR, Singh RK, Handa AK (1997) Chemistry and uses of pectin—a review. Crit Rev Food Sci Nutr 37(1):47–73PubMedCrossRefGoogle Scholar
  46. Thirawong N, Nunthanid J, Puttipipatkhachorn S et al (2007) Mucoadhesive properties of various pectins on gastrointestinal mucosa: an in vitro evaluation using texture analyzer. Eur J Pharm Biopharm 67(1):132–140PubMedCrossRefGoogle Scholar
  47. Tilstra JS, Robinson AR, Wang J et al (2012) NF-κB inhibition delays DNA damage-induced senescence and aging in mice. J Clin Invest 122(7):2601–2612PubMedCentralPubMedCrossRefGoogle Scholar
  48. Tzou P, Reichhart JM, Lemaitre B (2002) Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc Natl Acad Sci USA 99(4):2152–2157PubMedCentralPubMedCrossRefGoogle Scholar
  49. Verhelst K, Carpentier I, Beyaert R (2011) Regulation of TNF-induced NF-κB activation by different cytoplasmic ubiquitination events. Cytokine Growth Factor Rev 22(5–6):277–286PubMedCrossRefGoogle Scholar
  50. Wong R, Piper MD, Wertheim B et al (2009) Quantification of food intake in Drosophila. PLoS ONE 4(6):e6063PubMedCentralPubMedCrossRefGoogle Scholar
  51. Ye MB, Lim BO (2010) Dietary pectin regulates the levels of inflammatory cytokines and immunoglobulins in interleukin-10 knockout mice. J Agric Food ChemGoogle Scholar
  52. Zar JH (2010) Biostatistical analysis. Prentice-Hall/Pearson, Upper Saddle RiverGoogle Scholar
  53. Zhang Q, Li N, Zhou G et al (2003) In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacol Res 48(2):151–155PubMedCrossRefGoogle Scholar
  54. Zhao T, Zhang Q, Qi H et al (2008) Extension of life span and improvement of vitality of Drosophila melanogaster by long-term supplementation with different molecular weight polysaccharides from Porphyra haitanensis. Pharmacol Res 57(1):67–72PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mikhail Shaposhnikov
    • 1
    • 2
  • Dmitrii Latkin
    • 3
  • Ekaterina Plyusnina
    • 1
    • 2
  • Lyubov Shilova
    • 1
  • Anton Danilov
    • 1
  • Sergey Popov
    • 3
  • Alexander Zhavoronkov
    • 4
  • Yuri Ovodov
    • 3
  • Alexey Moskalev
    • 1
    • 2
    • 5
  1. 1.Laboratory of Molecular Radiobiology and Gerontology, Institute of BiologyKomi Science Center of Russian Academy of SciencesSyktyvkarRussia
  2. 2.Syktyvkar State UniversitySyktyvkarRussia
  3. 3.Institute of Physiology, Komi Science CentreThe Urals Branch of the Russian Academy of SciencesSyktyvkarRussia
  4. 4.Center for Pediatric Hematology, Oncology and ImmunologyMoscowRussia
  5. 5.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations