, Volume 14, Issue 6, pp 719–727 | Cite as

Polymorphisms in the superoxidase dismutase genes reveal no association with human longevity in Germans: a case–control association study

  • Liljana Gentschew
  • Friederike Flachsbart
  • Rabea Kleindorp
  • Nandini Badarinarayan
  • Stefan Schreiber
  • Almut Nebel
Research Article


The role of superoxide dismutases (SODs) in aging and oxidative stress regulation has been widely studied and there is growing evidence that imbalances in these processes influence lifespan in several species. In humans, genetic polymorphisms in SOD genes may play an important role in the development of age-related diseases and genetic variation in SOD2 is thought to be associated with longevity. These observations prompted us to perform a case–control association study using a comprehensive haplotype tagging approach for the three SOD genes (SOD1, SOD2, SOD3) by testing a total of 19 SNPs in our extensive collection of 1,612 long-lived individuals (centenarians and nonagenarians) and 1,104 younger controls. Furthermore, we intended to replicate the previous association of the SOD2 SNP rs4880 with longevity observed in a Danish cohort. In our study, no association was detected between the tested SNPs and the longevity phenotype, neither in the entire long-lived sample set nor in the centenarian subgroup analysis. Our results suggest that there is no considerable influence of sequence variation in the SOD genes on human longevity in Germans.


SOD Aging Centenarians SNP Case–control association 



This study was funded by the DFG Excellence Cluster ‘Inflammation at Interfaces’, the INTERREG 4 A programme Syddanmark-Schleswig-K.E.R.N (with EU funds from the European Regional Development Fund) and the RESOLVE project (FP7-HEALTH-F4-2008-202047).

Supplementary material

10522_2013_9470_MOESM1_ESM.doc (494 kb)
Supplementary material 1 (DOC 494 kb)


  1. Ambrosone CB, Freudenheim JL, Thompson PA, Bowman E, Vena JE, Marshall JR, Graham S, Laughlin R, Nemoto T, Shields PG (1999) Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Res 59:602–606PubMedGoogle Scholar
  2. Andersen HR, Jeune B, Nybo H, Nielsen JB, Andersen-Ranberg K, Grandjean P (1998) Low activity of superoxide dismutase and high activity of glutathione reductase in erythrocytes from centenarians. Age Ageing 27:643–648PubMedCrossRefGoogle Scholar
  3. Anselmi CV, Malovini A, Roncarati R, Novelli V, Villa F, Condorelli G, Bellazzi R, Puca AA (2009) Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Res 12:95–104PubMedCrossRefGoogle Scholar
  4. Araujo J, Breuer P, Dieringer S, Krauss S, Dorn S, Zimmermann K, Pfeifer A, Klockgether T, Wuellner U, Evert BO (2011) FOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3. Hum Mol Genet 20:2928–2941PubMedCrossRefGoogle Scholar
  5. Barbieri M, Rizzo MR, Manzella D, Grella R, Ragno E, Carbonella M, Abbatecola AM, Paolisso G (2003) Glucose regulation and oxidative stress in healthy centenarians. Exp Gerontol 38:137–143PubMedCrossRefGoogle Scholar
  6. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265PubMedCrossRefGoogle Scholar
  7. Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J, Glass D, Mangino M, Zhai G, Zhang F, Valdes A, Shin SY, Dempster EL, Murray RM, Grundberg E, Hedman AK, Nica A, Small KS, Dermitzakis ET, McCarthy MI, Mill J, Spector TD, Deloukas P (2012) Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet 8:e1002629. doi:10.1371/journal.pgen.1002629 PubMedCrossRefGoogle Scholar
  8. Benzi G, Moretti A (1995) Are reactive oxygen species involved in Alzheimer’s disease? Neurobiol Aging 16:661–674PubMedCrossRefGoogle Scholar
  9. Bokov A, Chaudhuri A, Richardson A (2004) The role of oxidative damage and stress in aging. Mech Ageing Dev 125:811–826PubMedCrossRefGoogle Scholar
  10. Brioukhanov AL, Netrusov AI, Eggen RI (2006) The catalase and superoxide dismutase genes are transcriptionally up-regulated upon oxidative stress in the strictly anaerobic archaeon Methanosarcina barkeri. Microbiology 152:1671–1677PubMedCrossRefGoogle Scholar
  11. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015PubMedCrossRefGoogle Scholar
  12. Budovsky A, Craig T, Wang J, Tacutu R, Csordas A, Lourenço J, Fraifeld VE, de Magalhães JP (2013) LongevityMap: a database of human genetic variants associated with longevity. Trends Genet. doi:10.1016/j.tig.2013.08.003 PubMedGoogle Scholar
  13. Buettner GR (2011) Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anticancer Agents Med Chem 11:341–346PubMedCrossRefGoogle Scholar
  14. Cabreiro F, Ackerman D, Doonan R, Araiz C, Back P, Papp D, Braeckman BP, Gems D (2011) Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage. Free Radic Biol Med 51:1575–1582PubMedCrossRefGoogle Scholar
  15. Caliebe A, Kleindorp R, Blanche H, Christiansen L, Puca AA, Rea IM, Slagboom E, Flachsbart F, Christensen K, Rimbach G, Schreiber S, Nebel A (2010) No or only population-specific effect of PON1 on human longevity: a comprehensive meta-analysis. Ageing Res Rev 9:238–244PubMedCrossRefGoogle Scholar
  16. Caple F, Williams EA, Spiers A, Tyson J, Burtle B, Daly AK, Mathers JC, Hesketh JE (2010) Inter-individual variation in DNA damage and base excision repair in young, healthy non-smokers: effects of dietary supplementation and genotype. Br J Nutr 103:1585–1593PubMedCrossRefGoogle Scholar
  17. Casado A, de la Torre R, Lopez-Fernandez E, Carrascosa D, Venarucci D (1998) Superoxide dismutase and catalase levels in diseases of the aged. Gac Med Mex 134:539–544PubMedGoogle Scholar
  18. Charniot JC, Sutton A, Bonnefont-Rousselot D, Cosson C, Khani-Bittar R, Giral P, Charnaux N, Albertini JP (2011) Manganese superoxide dismutase dimorphism relationship with severity and prognosis in cardiogenic shock due to dilated cardiomyopathy. Free Radic Res 45:379–388PubMedCrossRefGoogle Scholar
  19. Christensen K, Johnson TE, Vaupel JW (2006) The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet 7:436–448PubMedCrossRefGoogle Scholar
  20. Collino S, Montoliu I, Martin FP, Scherer M, Mari D, Salvioli S, Bucci L, Ostan R, Monti D, Biagi E, Brigidi P, Franceschi C, Rezzi S (2013) Metabolic signatures of extreme longevity in northern italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS ONE 8:e56564. doi:10.1371/journal.pone.0056564 PubMedCrossRefGoogle Scholar
  21. De Benedictis G, Carotenuto L, Carrieri G, De Luca M, Falcone E, Rose G, Cavalcanti S, Corsonello F, Feraco E, Baggio G, Bertolini S, Mari D, Mattace R, Yashin AI, Bonafe M, Franceschi C (1998) Gene/longevity association studies at four autosomal loci (REN, THO, PARP, SOD2). Eur J Hum Genet 6:534–541PubMedCrossRefGoogle Scholar
  22. Deelen J, Beekman M, Uh HW, Helmer Q, Kuningas M, Christiansen L, Kremer D, van der Breggen R, Suchiman HE, Lakenberg N, van den Akker EB, Passtoors WM, Tiemeier H, van Heemst D, de Craen AJ, Rivadeneira F, de Geus EJ, Perola M, van der Ouderaa FJ, Gunn DA, Boomsma DI, Uitterlinden AG, Christensen K, van Duijn CM, Heijmans BT, Houwing-Duistermaat JJ, Westendorp RG, Slagboom PE (2011) Genome-wide association study identifies a single major locus contributing to survival into old age; the APOE locus revisited. Aging Cell 10:686–698PubMedCrossRefGoogle Scholar
  23. Deelen J, Beekman M, Capri M, Franceschi C, Slagboom PE (2013) Identifying the genomic determinants of aging and longevity in human population studies: progress and challenges. BioEssays 35:386–396PubMedCrossRefGoogle Scholar
  24. Dirnagl U, Lauritzen M (2010) Fighting publication bias: introducing the Negative Results section. J Cereb Blood Flow Metab 30:1263–1264PubMedCrossRefGoogle Scholar
  25. Doonan R, McElwee JJ, Matthijssens F, Walker GA, Houthoofd K, Back P, Matscheski A, Vanfleteren JR, Gems D (2008) Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev 22:3236–3241PubMedCrossRefGoogle Scholar
  26. Duttaroy A, Paul A, Kundu M, Belton A (2003) A Sod2 null mutation confers severely reduced adult life span in Drosophila. Genetics 165:2295–2299PubMedGoogle Scholar
  27. Elchuri S, Oberley TD, Qi WB, Eisenstein RS, Roberts LJ, Van Remmen H, Jepstein CJ, Huang TT (2005) CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24:367–380PubMedCrossRefGoogle Scholar
  28. ElSharawy A, Keller A, Flachsbart F, Wendschlag A, Jacobs G, Kefer N, Brefort T, Leidinger P, Backes C, Meese E, Schreiber S, Rosenstiel P, Franke A, Nebel A (2012) Genome-wide miRNA signatures of human longevity. Aging Cell 11:607–616PubMedCrossRefGoogle Scholar
  29. Flachsbart F, Caliebe A, Kleindorp R, Blanche H, von Eller-Eberstein H, Nikolaus S, Schreiber S, Nebel A (2009) Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci USA 106:2700–2705PubMedCrossRefGoogle Scholar
  30. Gentilini D, Mari D, Castaldi D, Remondini D, Ogliari G, Ostan R, Bucci L, Sirchia SM, Tabano S, Cavagnini F, Monti D, Franceschi C, Di Blasio AM, Vitale G (2012) Role of epigenetics in human aging and longevity: genome-wide DNA methylation profile in centenarians and centenarians’ offspring. Age (Dordr). doi:10.1007/s11357-012-9463-1 Google Scholar
  31. Glessner JT, Smith AV, Panossian S, Kim CE, Takahashi N, Thomas KA, Wang F, Seidler K, Harris TB, Launer LJ, Keating B, Connolly J, Sleiman PM, Buxbaum JD, Grant SF, Gudnason V, Hakonarson H (2013) Copy number variations in alternative splicing gene networks impact lifespan. PLoS ONE 8:e53846. doi:10.1371/journal.pone.0053846 PubMedCrossRefGoogle Scholar
  32. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300PubMedCrossRefGoogle Scholar
  33. Herskind AM, McGue M, Holm NV, Sorensen TI, Harvald B, Vaupel JW (1996) The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum Genet 97:319–323PubMedCrossRefGoogle Scholar
  34. Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, Puca AA, Sayols S, Pujana MA, Serra-Musach J, Iglesias-Platas I, Formiga F, Fernandez AF, Fraga MF, Heath SC, Valencia A, Gut IG, Wang J, Esteller M (2012) Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci USA 109:10522–10527PubMedCrossRefGoogle Scholar
  35. Hiroi S, Harada H, Nishi H, Satoh M, Nagai R, Kimura A (1999) Polymorphisms in the SOD2 and HLA-DRB1 genes are associated with nonfamilial idiopathic dilated cardiomyopathy in Japanese. Biochem Biophys Res Commun 261:332–339PubMedCrossRefGoogle Scholar
  36. Hjelmborg J, Iachine I, Skytthe A, Vaupel JW, McGue M, Koskenvuo M, Kaprio J, Pedersen NL, Christensen K (2006) Genetic influence on human lifespan and longevity. Hum Genet 119:312–321CrossRefGoogle Scholar
  37. Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J 13:1385–1393PubMedGoogle Scholar
  38. Hu DY, Cao P, Thiels E, Chu CT, Wu GY, Oury TD, Klann E (2007) Hippocampal long-term potentiation, memory, and longevity in mice that overexpress mitochondrial superoxide dismutase. Neurobiol Learn Mem 87:372–384PubMedCrossRefGoogle Scholar
  39. Hubackova M, Vaclavikova R, Ehrlichova M, Mrhalova M, Kodet R, Kubackova K, Vrana D, Gut I, Soucek P (2012) Association of superoxide dismutases and NAD(P)H quinone oxidoreductases with prognosis of patients with breast carcinomas. Int J Cancer 130:338–348PubMedCrossRefGoogle Scholar
  40. Ioannidis JP (2006) Journals should publish all “null” results and should sparingly publish “positive” results. Cancer Epidemiol Biomarkers Prev 15:186PubMedCrossRefGoogle Scholar
  41. Jones DA, Prior SL, Tang TS, Bain SC, Hurel SJ, Humphries SE, Stephens JW (2010) Association between the rs4880 superoxide dismutase 2 (C > T) gene variant and coronary heart disease in diabetes mellitus. Diabetes Res Clin Pract 90:196–201PubMedCrossRefGoogle Scholar
  42. Kakko S, Paivansalo M, Koistinen P, Kesaniemi YA, Kinnula VL, Savolainen MJ (2003) The signal sequence polymorphism of the MnSOD gene is associated with the degree of carotid atherosclerosis. Atherosclerosis 168:147–152PubMedCrossRefGoogle Scholar
  43. Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA (2010) Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm 2010:453892PubMedCrossRefGoogle Scholar
  44. Kirby K, Hu J, Hilliker AJ, Phillips JP (2002) RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress. Proc Natl Acad Sci USA 99:16162–16167PubMedCrossRefGoogle Scholar
  45. Kuningas M, Estrada K, Hsu YH, Nandakumar K, Uitterlinden AG, Lunetta KL, van Duijn CM, Karasik D, Hofman A, Murabito J, Rivadeneira F, Kiel DP, Tiemeier H (2011) Large common deletions associate with mortality at old age. Hum Mol Genet 20:4290–4296PubMedCrossRefGoogle Scholar
  46. Lassegue B, Griendling KK (2004) Reactive oxygen species in hypertension; an update. Am J Hypertens 17:852–860PubMedCrossRefGoogle Scholar
  47. Li Y, Wang WJ, Cao H, Lu J, Wu C, Hu FY, Guo J, Zhao L, Yang F, Zhang YX, Li W, Zheng GY, Cui H, Chen X, Zhu Z, He H, Dong B, Mo X, Zeng Y, Tian XL (2009) Genetic association of FOXO1A and FOXO3A with longevity trait in Han Chinese populations. Hum Mol Genet 18:4897–4904PubMedCrossRefGoogle Scholar
  48. Lin S, Chakravarti A, Cutler DJ (2004) Exhaustive allelic transmission disequilibrium tests as a new approach to genome-wide association studies. Nat Genet 36:1181–1188PubMedCrossRefGoogle Scholar
  49. Ljungquist B, Berg S, Lanke J, McClearn GE, Pedersen NL (1998) The effect of genetic factors for longevity: a comparison of identical and fraternal twins in the Swedish Twin Registry. J Gerontol A Biol Sci Med Sci 53:M441–M446PubMedCrossRefGoogle Scholar
  50. Longo VD, Liou LL, Valentine JS, Gralla EB (1999) Mitochondrial superoxide decreases yeast survival in stationary phase. Arch Biochem Biophys 365:131–142PubMedCrossRefGoogle Scholar
  51. Mecocci P, Polidori MC, Troiano L, Cherubini A, Cecchetti R, Pini G, Straatman M, Monti D, Stahl W, Sies H, Franceschi C, Senin U (2000) Plasma antioxidants and longevity: a study on healthy centenarians. Free Radic Biol Med 28:1243–1248PubMedCrossRefGoogle Scholar
  52. Morrell CN (2008) Reactive oxygen species: finding the right balance. Circ Res 103:571–572PubMedCrossRefGoogle Scholar
  53. Nebel A, Croucher PJ, Stiegeler R, Nikolaus S, Krawczak M, Schreiber S (2005) No association between microsomal triglyceride transfer protein (MTP) haplotype and longevity in humans. Proc Natl Acad Sci USA 102:7906–7909PubMedCrossRefGoogle Scholar
  54. Nebel A, Kleindorp R, Caliebe A, Nothnagel M, Blanche H, Junge O, Wittig M, Ellinghaus D, Flachsbart F, Wichmann HE, Meitinger T, Nikolaus S, Franke A, Krawczak M, Lathrop M, Schreiber S (2011) A genome-wide association study confirms APOE as the major gene influencing survival in long-lived individuals. Mech Ageing Dev 132:324–330PubMedCrossRefGoogle Scholar
  55. Newman AB, Walter S, Lunetta KL, Garcia ME, Slagboom PE, Christensen K, Arnold AM, Aspelund T, Aulchenko YS, Benjamin EJ, Christiansen L, D’Agostino RB Sr, Fitzpatrick AL, Franceschini N, Glazer NL, Gudnason V, Hofman A, Kaplan R, Karasik D, Kelly-Hayes M, Kiel DP, Launer LJ, Marciante KD, Massaro JM, Miljkovic I, Nalls MA, Hernandez D, Psaty BM, Rivadeneira F, Rotter J, Seshadri S, Smith AV, Taylor KD, Tiemeier H, Uh HW, Uitterlinden AG, Vaupel JW, Walston J, Westendorp RG, Harris TB, Lumley T, van Duijn CM, Murabito JM (2010) A meta-analysis of four genome-wide association studies of survival to age 90 years or older: the cohorts for heart and aging research in genomic epidemiology consortium. J Gerontol A Biol Sci Med Sci 65:478–487PubMedCrossRefGoogle Scholar
  56. Nozik-Grayck E, Suliman HB, Piantadosi CA (2005) Extracellular superoxide dismutase. Int J Biochem Cell Biol 37:2466–2471PubMedCrossRefGoogle Scholar
  57. Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130PubMedCrossRefGoogle Scholar
  58. Paolisso G, Tagliamonte MR, Rizzo MR, Manzella D, Gambardella A, Varricchio M (1998) Oxidative stress and advancing age: results in healthy centenarians. J Am Geriatr Soc 46:833–838PubMedGoogle Scholar
  59. Pawlikowska L, Hu D, Huntsman S, Sung A, Chu C, Chen J, Joyner AH, Schork NJ, Hsueh WC, Reiner AP, Psaty BM, Atzmon G, Barzilai N, Cummings SR, Browner WS, Kwok PY, Ziv E (2009) Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell 8:460–472PubMedCrossRefGoogle Scholar
  60. Perls T, Kunkel LM, Puca AA (2002) The genetics of exceptional human longevity. J Mol Neurosci 19:233–238PubMedCrossRefGoogle Scholar
  61. Phillips JP, Campbell SD, Michaud D, Charbonneau M, Hilliker AJ (1989) Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc Natl Acad Sci USA 86:2761–2765PubMedCrossRefGoogle Scholar
  62. Rattan SI (2010) Targeting the age-related occurrence, removal, and accumulation of molecular damage by hormesis. Ann NY Acad Sci 1197:28–32PubMedCrossRefGoogle Scholar
  63. Rattan SI, Demirovic D (2009) Hormesis can and does work in humans. Dose Response 8:58–63PubMedCrossRefGoogle Scholar
  64. Ristow M, Zarse K (2010) How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 45:410–418PubMedCrossRefGoogle Scholar
  65. Schachter F, Faure-Delanef L, Guenot F, Rouger H, Froguel P, Lesueur-Ginot L, Cohen D (1994) Genetic associations with human longevity at the APOE and ACE loci. Nat Genet 6:29–32PubMedCrossRefGoogle Scholar
  66. Schoenhofen EA, Wyszynski DF, Andersen S, Pennington J, Young R, Terry DF, Perls TT (2006) Characteristics of 32 supercentenarians. J Am Geriatr Soc 54:1237–1240PubMedCrossRefGoogle Scholar
  67. Sebastiani P, Perls TT (2012) The genetics of extreme longevity: lessons from the new England centenarian study. Front Genet 3:277PubMedGoogle Scholar
  68. Sebastiani P, Riva A, Montano M, Pham P, Torkamani A, Scherba E, Benson G, Milton JN, Baldwin CT, Andersen S, Schork NJ, Steinberg MH, Perls TT (2011) Whole genome sequences of a male and female supercentenarian, ages greater than 114 years. Front Genet 2:90PubMedGoogle Scholar
  69. Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, Nakagawa-Hattori Y, Shimizu Y, Mizuno Y (1996) Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson’s disease. Biochem Biophys Res Commun 226:561–565PubMedCrossRefGoogle Scholar
  70. Skytthe A, Pedersen NL, Kaprio J, Stazi MA, Hjelmborg JV, Iachine I, Vaupel JW, Christensen K (2003) Longevity studies in GenomEUtwin. Twin Res 6:448–454PubMedGoogle Scholar
  71. Soerensen M, Christensen K, Stevnsner T, Christiansen L (2009) The Mn-superoxide dismutase single nucleotide polymorphism rs4880 and the glutathione peroxidase 1 single nucleotide polymorphism rs1050450 are associated with aging and longevity in the oldest old. Mech Ageing Dev 130:308–314PubMedCrossRefGoogle Scholar
  72. Soerensen M, Dato S, Christensen K, McGue M, Stevnsner T, Bohr VA, Christiansen L (2010) Replication of an association of variation in the FOXO3A gene with human longevity using both case–control and longitudinal data. Aging Cell 9:1010–1017PubMedCrossRefGoogle Scholar
  73. Stessman J, Maaravi Y, Hammerman-Rozenberg R, Cohen A, Nemanov L, Gritsenko I, Gruberman N, Ebstein RP (2005) Candidate genes associated with ageing and life expectancy in the Jerusalem longitudinal study. Mech Ageing Dev 126:333–339PubMedCrossRefGoogle Scholar
  74. Sun J, Folk D, Bradley TJ, Tower J (2002) Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 161:661–672PubMedGoogle Scholar
  75. Tan Q, De Benedictis G, Ukraintseva SV, Franceschi C, Vaupel JW, Yashin AI (2002) A centenarian-only approach for assessing gene–gene interaction in human longevity. Eur J Hum Genet 10:119–124PubMedCrossRefGoogle Scholar
  76. Taufer M, Peres A, de Andrade VM, de Oliveira G, Sa G, do Canto ME, Dos Santos AR, Bauer ME, Da Cruz IB (2005) Is the Val16Ala manganese superoxide dismutase polymorphism associated with the aging process? J Gerontol A Biol Sci Med Sci 60:432–438PubMedCrossRefGoogle Scholar
  77. Tian C, Fang S, Du X, Jia C (2011) Association of the C47T polymorphism in SOD2 with diabetes mellitus and diabetic microvascular complications: a meta-analysis. Diabetologia 54:803–811PubMedCrossRefGoogle Scholar
  78. Treiber N, Maity P, Singh K, Kohn M, Keist AF, Ferchiu F, Sante L, Frese S, Bloch W, Kreppel F, Kochanek S, Sindrilaru A, Iben S, Hogel J, Ohnmacht M, Claes LE, Ignatius A, Chung JH, Lee MJ, Kamenisch Y, Berneburg M, Nikolaus T, Braunstein K, Sperfeld AD, Ludolph AC, Briviba K, Wlaschek M, Florin L, Angel P, Scharffetter-Kochanek K (2011) Accelerated aging phenotype in mice with conditional deficiency for mitochondrial superoxide dismutase in the connective tissue. Aging Cell 10:239–254PubMedCrossRefGoogle Scholar
  79. Unlu ES, Koc A (2007) Effects of deleting mitochondrial antioxidant genes on life span. Ann NY Acad Sci 1100:505–509PubMedCrossRefGoogle Scholar
  80. Walter S, Atzmon G, Demerath EW, Garcia ME, Kaplan RC, Kumari M, Lunetta KL, Milaneschi Y, Tanaka T, Tranah GJ, Volker U, Yu L, Arnold A, Benjamin EJ, Biffar R, Buchman AS, Boerwinkle E, Couper D, De Jager PL, Evans DA, Harris TB, Hoffmann W, Hofman A, Karasik D, Kiel DP, Kocher T, Kuningas M, Launer LJ, Lohman KK, Lutsey PL, Mackenbach J, Marciante K, Psaty BM, Reiman EM, Rotter JI, Seshadri S, Shardell MD, Smith AV, van Duijn C, Walston J, Zillikens MC, Bandinelli S, Baumeister SE, Bennett DA, Ferrucci L, Gudnason V, Kivimaki M, Liu Y, Murabito JM, Newman AB, Tiemeier H, Franceschini N (2011) A genome-wide association study of aging. Neurobiol Aging 32(2109):e15–e28PubMedGoogle Scholar
  81. Wang LI, Miller DP, Sai Y, Liu G, Su L, Wain JC, Lynch TJ, Christiani DC (2001) Manganese superoxide dismutase alanine-to-valine polymorphism at codon 16 and lung cancer risk. J Natl Cancer Inst 93:1818–1821PubMedCrossRefGoogle Scholar
  82. Wang F, Nguyen M, Qin FX, Tong Q (2007) SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6:505–514PubMedCrossRefGoogle Scholar
  83. Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14PubMedCrossRefGoogle Scholar
  84. Wawryn J, Krzepilko A, Myszka A, Bilinski T (1999) Deficiency in superoxide dismutases shortens life span of yeast cells. Acta Biochim Pol 46:249–253PubMedGoogle Scholar
  85. Wiener HW, Perry RT, Chen Z, Harrell LE, Go RC (2007) A polymorphism in SOD2 is associated with development of Alzheimer’s disease. Genes Brain Behav 6:770–775PubMedCrossRefGoogle Scholar
  86. Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K, Masaki KH, Willcox DC, Rodriguez B, Curb JD (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci USA 105:13987–13992PubMedCrossRefGoogle Scholar
  87. Woodson K, Tangrea JA, Lehman TA, Modali R, Taylor KM, Snyder K, Taylor PR, Virtamo J, Albanes D (2003) Manganese superoxide dismutase (MnSOD) polymorphism, alpha-tocopherol supplementation and prostate cancer risk in the alpha-tocopherol, beta-carotene cancer prevention study (Finland). Cancer Causes Control 14:513–518PubMedCrossRefGoogle Scholar
  88. Yen K, Patel HB, Lublin AL, Mobbs CV (2009) SOD isoforms play no role in lifespan in ad lib or dietary restricted conditions, but mutational inactivation of SOD-1 reduces life extension by cold. Mech Ageing Dev 130:173–178PubMedCrossRefGoogle Scholar
  89. Yi JF, Li YM, Liu T, He WT, Li X, Zhou WC, Kang SL, Zeng XT, Zhang JQ (2010) Mn-SOD and CuZn-SOD polymorphisms and interactions with risk factors in gastric cancer. World J Gastroenterol 16:4738–4746PubMedCrossRefGoogle Scholar
  90. Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Liljana Gentschew
    • 1
  • Friederike Flachsbart
    • 1
  • Rabea Kleindorp
    • 1
  • Nandini Badarinarayan
    • 1
  • Stefan Schreiber
    • 1
    • 2
    • 3
  • Almut Nebel
    • 1
  1. 1.Institute of Clinical Molecular BiologyChristian-Albrechts-University of KielKielGermany
  2. 2.Clinic for Internal Medicine IUniversity Hospital Schleswig-HolsteinKielGermany
  3. 3.Popgen BiobankChristian-Albrechts-UniversityKielGermany

Personalised recommendations