, Volume 14, Issue 6, pp 741–751 | Cite as

Senescent human periodontal ligament fibroblasts after replicative exhaustion or ionizing radiation have a decreased capacity towards osteoblastic differentiation

  • Dimitrios Konstantonis
  • Adamantia Papadopoulou
  • Margarita Makou
  • Theodore Eliades
  • Efthimia K. Basdra
  • Dimitris Kletsas
Research Article


Loss of teeth increases with age or after genotoxic treatments, like head and neck radiotherapy, due to periodontium breakdown. Periodontal ligament fibroblasts represent the main cell type in this tissue and are crucial for the maintenance of homeodynamics and for its regeneration. Here, we have studied the characteristics of human periodontal ligament fibroblasts (hPDLF) that became senescent after replicative exhaustion or after exposure to ionizing radiation, as well as their ability for osteoblastic differentiation. We found that senescent hPDLF express classical markers of senescence, as well as a catabolic phenotype, as shown by the decrease in collagen type I and the increase of MMP-2 expression. In addition, we observed a considerably decreased expression of the major transcription factor for osteoblastic differentiation, i.e. Runx2, a down-regulation which was found to be p53-dependent. In accordance to the above, senescent cells have a significantly decreased alkaline phosphatase gene expression and activity, as well as a reduced ability for osteoblastic differentiation, as found by Alizarin Red staining. Interestingly, cells from both type of senescence express similar characteristics, implying analogous functions in vivo. In conclusion, senescent hPDLF express a catabolic phenotype and express a significantly decreased ability towards an osteoblastic differentiation, thus probably affecting tissue development and integrity.


Periodontal ligament fibroblasts Senescence Osteoblastic differentiation Runx2 ALP 

Supplementary material

10522_2013_9449_MOESM1_ESM.ppt (142 kb)
Effect of a single 4-Gy dose of ionizing radiation on early passage hPDL fibroblasts. Cells were irradiated with 4 Gy of ionizing radiation in 60Co source, and cell lysates, collected at the indicated time-points, were subjected to Western blot analysis by using specific antibodies. Actin levels were used as internal loading control. Supplementary material (PPT 143 kb)


  1. Anneroth G, LE Holm, Karlsson G (1985) The effect of radiation on teeth. A clinical, histologic and microradiographic study. Int J Oral Surg 14(3):269–274PubMedCrossRefGoogle Scholar
  2. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LV, Kolettas E, Niforou K, Zoumpourlis VC, Takaoka M, Nakagawa H, Tort F, Fugger K, Johansson F, Sehested M, Andersen CL, Dyrskjot L, Orntoft T, Lukas J, Kittas C, Helleday T, Halazonetis TD, Bartek J, Gorgoulis VG (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444(7119):633–637. doi: 10.1038/nature05268 PubMedCrossRefGoogle Scholar
  3. Basdra EK, Komposch G (1997) Osteoblast-like properties of human periodontal ligament cells: an in vitro analysis. Eur J Orthod 19(6):615–621PubMedCrossRefGoogle Scholar
  4. Benatti BB, Silverio KG, Casati MZ, Sallum EA, Nociti FH, Jr (2008) Influence of aging on biological properties of periodontal ligament cells. Connect Tissue Res 49(6):401–408. doi: 10.1080/03008200802171159 PubMedCrossRefGoogle Scholar
  5. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740. doi: 10.1038/nrm2233 PubMedCrossRefGoogle Scholar
  6. Carnes DL, Maeder CL, Graves DT (1997) Cells with osteoblastic phenotypes can be explanted from human gingiva and periodontal ligament. J Periodontol 68(7):701–707. doi: 10.1902/jop.1997.68.7.701 PubMedCrossRefGoogle Scholar
  7. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89(5):747–754PubMedCrossRefGoogle Scholar
  8. Fernandes MH, Costa MA, Carvalho GS (1997) Mineralization in serially passaged human alveolar bone cells. J Mater Sci Mater Med 8(2):61–65PubMedCrossRefGoogle Scholar
  9. Gorgoulis VG, Pratsinis H, Zacharatos P, Demoliou C, Sigala F, Asimacopoulos PJ, Papavassiliou AG, Kletsas D (2005) p53-dependent ICAM-1 overexpression in senescent human cells identified in atherosclerotic lesions. Lab Invest 85(4):502–511. doi: 10.1038/labinvest.3700241 PubMedCrossRefGoogle Scholar
  10. Goseki T, Shimizu N, Iwasawa T, Takiguchi H, Abiko Y (1996) Effects of in vitro cellular aging on alkaline phosphatase, cathepsin activities and collagen secretion of human periodontal ligament derived cells. Mech Ageing Dev 91(3):171–183PubMedCrossRefGoogle Scholar
  11. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621PubMedCrossRefGoogle Scholar
  12. Itaya T, Kagami H, Okada K, Yamawaki A, Narita Y, Inoue M, Sumita Y, Ueda M (2009) Characteristic changes of periodontal ligament-derived cells during passage. J Periodontal Res 44(4):425–433. doi: 10.1111/j.1600-0765.2008.01137.x PubMedCrossRefGoogle Scholar
  13. Ivanovski S, Li H, Haase HR, Bartold PM (2001) Expression of bone associated macromolecules by gingival and periodontal ligament fibroblasts. J Periodontal Res 36(3):131–141PubMedCrossRefGoogle Scholar
  14. Jeyapalan JC, Sedivy JM (2008) Cellular senescence and organismal aging. Mech Ageing Dev 129(7–8):467–474. doi: 10.1016/j.mad.2008.04.001 PubMedCrossRefGoogle Scholar
  15. Kassem M, Ankersen L, Eriksen EF, Clark BF, Rattan SI (1997) Demonstration of cellular aging and senescence in serially passaged long-term cultures of human trabecular osteoblasts. Osteoporos Int 7(6):514–524PubMedCrossRefGoogle Scholar
  16. Kletsas D, Basdra EK, Papavassiliou AG (1998) Mechanical stress induces DNA synthesis in PDL fibroblasts by a mechanism unrelated to autocrine growth factor action. FEBS Lett 430(3):358–362PubMedCrossRefGoogle Scholar
  17. Kletsas D, Basdra EK, Papavassiliou AG (2002) Effect of protein kinase inhibitors on the stretch-elicited c-Fos and c-Jun up-regulation in human PDL osteoblast-like cells. J Cell Physiol 190(3):313–321. doi: 10.1002/jcp.10052 PubMedCrossRefGoogle Scholar
  18. Kraft DC, Bindslev DA, Melsen B, Abdallah BM, Kassem M, Klein-Nulend J (2010) Mechanosensitivity of dental pulp stem cells is related to their osteogenic maturity. Eur J Oral Sci 118(1):29–38. doi: 10.1111/j.1600-0722.2009.00709.x PubMedCrossRefGoogle Scholar
  19. Le ON, Rodier F, Fontaine F, Coppe JP, Campisi J, DeGregori J, Laverdiere C, Kokta V, Haddad E, Beausejour CM (2010) Ionizing radiation-induced long-term expression of senescence markers in mice is independent of p53 and immune status. Aging Cell 9(3):398–409. doi: 10.1111/j.1474-9726.2010.00567.x PubMedCrossRefGoogle Scholar
  20. Lekic PC, Pender N, McCulloch CA (1997) Is fibroblast heterogeneity relevant to the health, diseases, and treatments of periodontal tissues? Crit Rev Oral Biol Med 8(3):253–268PubMedCrossRefGoogle Scholar
  21. Liu H, Li B (2010) p53 control of bone remodeling. J Cell Biochem 111(3):529–534. doi: 10.1002/jcb.22749 PubMedCrossRefGoogle Scholar
  22. Lossdorfer S, Kraus D, Jager A (2010) Aging affects the phenotypic characteristics of human periodontal ligament cells and the cellular response to hormonal stimulation in vitro. J Periodontal Res 45(6):764–771. doi: 10.1111/j.1600-0765.2010.01297.x PubMedCrossRefGoogle Scholar
  23. Marchesan JT, Scanlon CS, Soehren S, Matsuo M, Kapila YL (2011) Implications of cultured periodontal ligament cells for the clinical and experimental setting: a review. Arch Oral Biol 56(10):933–943. doi: 10.1016/j.archoralbio.2011.03.003 PubMedCrossRefGoogle Scholar
  24. Mavrogonatou E, Kletsas D (2009) High osmolality activates the G1 and G2 cell cycle checkpoints and affects the DNA integrity of nucleus pulposus intervertebral disc cells triggering an enhanced DNA repair response. DNA Repair 8(8):930–943. doi: 10.1016/j.dnarep.2009.05.005 PubMedCrossRefGoogle Scholar
  25. Molchadsky A, Shats I, Goldfinger N, Pevsner-Fischer M, Olson M, Rinon A, Tzahor E, Lozano G, Zipori D, Sarig R, Rotter V (2008) p53 plays a role in mesenchymal differentiation programs, in a cell fate dependent manner. PLoS One 3(11):e3707. doi: 10.1371/journal.pone.0003707 PubMedCrossRefGoogle Scholar
  26. Murakami Y, Kojima T, Nagasawa T, Kobayashi H, Ishikawa I (2003) Novel isolation of alkaline phosphatase-positive subpopulation from periodontal ligament fibroblasts. J Periodontol 74(6):780–786. doi: 10.1902/jop.2003.74.6.780 PubMedCrossRefGoogle Scholar
  27. Ohzeki K, Yamaguchi M, Shimizu N, Abiko Y (1999) Effect of cellular aging on the induction of cyclooxygenase-2 by mechanical stress in human periodontal ligament cells. Mech Ageing Dev 108(2):151–163PubMedCrossRefGoogle Scholar
  28. Papadopoulou A, Kletsas D (2011) Human lung fibroblasts prematurely senescent after exposure to ionizing radiation enhance the growth of malignant lung epithelial cells in vitro and in vivo. Int J Oncol 39(4):989–999. doi: 10.3892/ijo.2011.1132 PubMedGoogle Scholar
  29. Pratap J, Galindo M, Zaidi SK, Vradii D, Bhat BM, Robinson JA, Choi JY, Komori T, Stein JL, Lian JB, Stein GS, van Wijnen AJ (2003) Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res 63(17):5357–5362PubMedGoogle Scholar
  30. Pratsinis H, Kletsas D (2007) PDGF, bFGF and IGF-I stimulate the proliferation of intervertebral disc cells in vitro via the activation of the ERK and Akt signaling pathways. Eur Spine J 16(11):1858–1866. doi: 10.1007/s00586-007-0408-9 PubMedCrossRefGoogle Scholar
  31. Sawa Y, Phillips A, Hollard J, Yoshida S, Braithwaite MW (2000) The in vitro life-span of human periodontal ligament fibroblasts. Tissue Cell 32(2):163–170. doi: 10.1054/tice.2000.0100 PubMedCrossRefGoogle Scholar
  32. Sawa Y, Yamaoka Y, Kuroshima S, Yoshida S (2004) Reduction of alkaline phosphatase activity in aged human osteogenic periodontal ligament fibroblasts exhibiting short telomeres. Cell Tissue Res 315(3):331–337. doi: 10.1007/s00441-003-0837-7 PubMedCrossRefGoogle Scholar
  33. Stanford CM, Jacobson PA, Eanes ED, Lembke LA, Midura RJ (1995) Rapidly forming apatitic mineral in an osteoblastic cell line (UMR 106–01 BSP). J Biol Chem 270(16):9420–9428PubMedCrossRefGoogle Scholar
  34. Tacutu R, Budovsky A, Yanai H, Fraifeld VE (2011) Molecular links between cellular senescence, longevity and age-related diseases—a systems biology perspective. Aging (Albany NY) 3(12):1178–1191Google Scholar
  35. Tataria M, Quarto N, Longaker MT, Sylvester KG (2006) Absence of the p53 tumor suppressor gene promotes osteogenesis in mesenchymal stem cells. J Pediatr Surg 41(4):624–632. doi: 10.1016/j.jpedsurg.2005.12.001 (discussion 624–632)PubMedCrossRefGoogle Scholar
  36. Toussaint O, Medrano EE, von Zglinicki T (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35(8):927–945PubMedCrossRefGoogle Scholar
  37. Vissink A, Jansma J, Spijkervet FK, Burlage FR, Coppes RP (2003) Oral sequelae of head and neck radiotherapy. Crit Rev Oral Biol Med 14(3):199–212PubMedCrossRefGoogle Scholar
  38. Wang X, Kua HY, Hu Y, Guo K, Zeng Q, Wu Q, Ng HH, Karsenty G, de Crombrugghe B, Yeh J, Li B (2006) p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling. J Cell Biol 172(1):115–125. doi: 10.1083/jcb.200507106 PubMedCrossRefGoogle Scholar
  39. Ziros PG, Basdra EK, Papavassiliou AG (2008) Runx2: of bone and stretch. Int J Biochem Cell Biol 40(9):1659–1663. doi: 10.1016/j.biocel.2007.05.024 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Dimitrios Konstantonis
    • 1
    • 2
  • Adamantia Papadopoulou
    • 1
  • Margarita Makou
    • 2
  • Theodore Eliades
    • 3
  • Efthimia K. Basdra
    • 4
  • Dimitris Kletsas
    • 1
  1. 1.Laboratory of Cell Proliferation & Ageing, Institute of Biosciences & ApplicationsNCSR “Demokritos”AthensGreece
  2. 2.Department of Orthodontics, School of DentistryUniversity of AthensAthensGreece
  3. 3.Department of Orthodontics and Paediatric DentistryUniversity of ZurichZurichSwitzerland
  4. 4.Cellular and Molecular Biomechanics Unit, Department of Biological ChemistryUniversity of Athens Medical SchoolAthensGreece

Personalised recommendations