, Volume 14, Issue 6, pp 753–762 | Cite as

Association of AMD-like retinopathy development with an Alzheimer’s disease metabolic pathway in OXYS rats

  • Oyuna S. Kozhevnikova
  • Elena E. Korbolina
  • Natalia A. Stefanova
  • Natalia A. Muraleva
  • Yuriy L. Orlov
  • Nataliya G. Kolosova
Research Article


The main cause of vision loss in older individuals is age-related macular degeneration (AMD)—a complex multifactorial disease, whose etiology and pathogenesis are not completely understood. This is due to the impossibility of investigating the early stages of AMD and paucity of biological models. The senescence-accelerated OXYS rats develop retinopathy with clinical and morphological manifestations similar to AMD. But the genetic determinants of its development are not known. Previously we identified quantitative trait loci (QTLs) associated with the development of cataract, retinopathy, and behavioral signs in OXYS rat. In this study, we used bioinformatic analysis to show the enrichment of QTL region with genes associated with neurodegeneration, including a pathway of Alzheimer’s disease. For selected list of candidate genes we designed oligonucleotide DNA chips. Using them we found small but significant changes in expression of several genes in OXYS retina compared to disease-free Wistar rats. Among the genes with altered expression were Picalm and Apba2, known to be participants in the processing of the beta-amyloid (Aβ). Measurement of Aβ 1-42 in the retina showed that its level increases with age in rats, and at advanced stages of retinopathy in OXYS rats, its expression becomes significantly higher than that of disease-free Wistar rats. Based on functional annotation of QTL, microarray, and ELISA results we suggest that accumulation of Aβ may have a role in the pathogenesis of retinopathy in OXYS rats.


Aging OXYS rats Age-related macular degeneration QTL Beta-amyloid protein 



Alzheimer’s disease

Aβ (1-42)

Amyloid beta protein fragment (1-42)


Amyloid beta precursor protein


Age-related macular degeneration


Retinal pigment epithelium


Quantitative trait loci



Microscopy was performed in the Microscopy Centre of Institute Cytology and Genetics SB RAS. We thank A. Shvalov and S.I. Baiborodin for technical assistance and Dr. E. Rogaev for helpful discussion. This study was supported by Russian Foundation for Basic Research Grants (project 11-04-00666-a, 12-04-00091-a and 12-04-31975) and partially by Project No. 14.B25.31.0033, Resolution No. 220 of the Government of the Russian Federation of April 9, 2010.


  1. Aerts S, Lambrechts D, Maity S et al (2006) Gene prioritization through genomic data fusion. Nat Biotechnol 24:537–544. doi: 10.1038/nbt1203 PubMedCrossRefGoogle Scholar
  2. Agafonova IG, Kolosova NG, Mishchenko NP et al (2007) Effect of histochrome on brain vessels and research and exploratory activity of senescence-accelerated OXYS rats. Bull Exp Biol Med 143:467–471PubMedCrossRefGoogle Scholar
  3. Baig S, Joseph SA, Tayler H et al (2010) Distribution and expression of picalm in Alzheimer disease. J Neuropathol Exp Neurol 69:1071–1077. doi: 10.1097/NEN.0b013e3181f52e01 PubMedCrossRefGoogle Scholar
  4. Cataldi A, Di Giulio C (2009) “Oxygen supply” as modulator of aging processes: hypoxia and hyperoxia models for aging studies. Curr Aging Sci 2:95–102PubMedCrossRefGoogle Scholar
  5. Chiu K, Chan T-F, Wu A et al (2012) Neurodegeneration of the retina in mouse models of Alzheimer’s disease: what can we learn from the retina? Age (Dordr) 34:633–649. doi: 10.1007/s11357-011-9260-2 CrossRefGoogle Scholar
  6. Dasari B, Prasanthi JR, Marwarha G et al (2011) Cholesterol-enriched diet causes age-related macular degeneration-like pathology in rabbit retina. BMC Ophthalmol 11:22. doi: 10.1186/1471-2415-11-22 PubMedCrossRefGoogle Scholar
  7. Dennis G, Sherman BT, Hosack DA et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3PubMedCrossRefGoogle Scholar
  8. Dentchev T, Milam AH, Lee VM-Y et al (2003) Amyloid-beta is found in drusen from some age-related macular degeneration retinas, but not in drusen from normal retinas. Mol Vis 9:184–190PubMedGoogle Scholar
  9. Ding J-D, Johnson LV, Herrmann R et al (2011) Anti-amyloid therapy protects against retinal pigmented epithelium damage and vision loss in a model of age-related macular degeneration. Proc Natl Acad Sci USA 108:E279–E287. doi: 10.1073/pnas.1100901108 PubMedCrossRefGoogle Scholar
  10. Harold D, Abraham R, Hollingworth P et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093. doi: 10.1038/ng.440 PubMedCrossRefGoogle Scholar
  11. Hoh Kam J, Lenassi E, Jeffery G (2010) Viewing ageing eyes: diverse sites of amyloid Beta accumulation in the ageing mouse retina and the up-regulation of macrophages. PLoS One. doi: 10.1371/journal.pone.0013127 PubMedGoogle Scholar
  12. Huang Q-Y, Li GHY, Cheung WMW et al (2008) Prediction of osteoporosis candidate genes by computational disease-gene identification strategy. J Hum Genet 53:644–655. doi: 10.1007/s10038-008-0295-x PubMedCrossRefGoogle Scholar
  13. Hughes TR, Mao M, Jones AR et al (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 19:342–347. doi: 10.1038/86730 PubMedCrossRefGoogle Scholar
  14. Hur J-Y, Teranishi Y, Kihara T et al (2012) Identification of novel γ-secretase-associated proteins in detergent-resistant membranes from brain. J Biol Chem 287:11991–12005. doi: 10.1074/jbc.M111.246074 PubMedCrossRefGoogle Scholar
  15. Joe B, Letwin NE, Garrett MR et al (2005) Transcriptional profiling with a blood pressure QTL interval-specific oligonucleotide array. Physiol Genomics 23:318–326. doi: 10.1152/physiolgenomics.00164.2004 PubMedCrossRefGoogle Scholar
  16. Johnson LV, Leitner WP, Rivest AJ et al (2002) The Alzheimer’s A beta-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci USA 99:11830–11835. doi: 10.1073/pnas.192203399 PubMedCrossRefGoogle Scholar
  17. Kaarniranta K, Salminen A, Haapasalo A et al (2011) Age-related macular degeneration (AMD): Alzheimer’s disease in the eye? J Alzheimers Dis 24:615–631. doi: 10.3233/JAD-2011-101908 PubMedGoogle Scholar
  18. Kolosova NG, Stefanova NA, Sergeeva SV (2009) OXYS rats: a prospective model for evaluation of antioxidant availability in prevention and therapy of accelerated aging and age-related cognitive decline. In: Gariépy Q, Ménard R (eds) Handbook of cognitive aging: causes. Nova Science Publishers, NY, pp 47–82Google Scholar
  19. Kolosova NG, Muraleva NA, Zhdankina AA et al (2012) Prevention of age-related macular degeneration-like retinopathy by rapamycin in rats. Am J Pathol 181:472–477. doi: 10.1016/j.ajpath.2012.04.018 PubMedCrossRefGoogle Scholar
  20. Korbolina EE, Kozhevnikova OS, Stefanova NA, Kolosova NG (2012) Quantitative trait loci on chromosome 1 for cataract and AMD-like retinopathy in senescence-accelerated OXYS rats. Aging (Albany NY) 4:49–59PubMedGoogle Scholar
  21. Kozhevnikova OS, Korbolina EE, Ershov NI, Kolosova NG (2013) Rat retinal transcriptome: effects of aging and AMD-like retinopathy. Cell Cycle. 12(11):1745–1761. doi: 10.4161/cc.24825 Google Scholar
  22. Lambert J-C, Heath S, Even G et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099. doi: 10.1038/ng.439 PubMedCrossRefGoogle Scholar
  23. Laws SM, Hone E, Gandy S, Martins RN (2003) Expanding the association between the APOE gene and the risk of Alzheimer’s disease: possible roles for APOE promoter polymorphisms and alterations in APOE transcription. J Neurochem 84:1215–1236PubMedCrossRefGoogle Scholar
  24. Liang WS, Reiman EM, Valla J et al (2008) Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA 105:4441–4446. doi: 10.1073/pnas.0709259105 PubMedCrossRefGoogle Scholar
  25. Loeffler DA, Camp DM, Bennett DA (2008) Plaque complement activation and cognitive loss in Alzheimer’s disease. J Neuroinflammation 5:9. doi: 10.1186/1742-2094-5-9 PubMedCrossRefGoogle Scholar
  26. Luibl V, Isas JM, Kayed R et al (2006) Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. J Clin Invest 116:378–385. doi: 10.1172/JCI25843 PubMedCrossRefGoogle Scholar
  27. Mandrekar S, Jiang Q, Lee CYD et al (2009) Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis. J Neurosci 29:4252–4262. doi: 10.1523/JNEUROSCI.5572-08.2009 PubMedCrossRefGoogle Scholar
  28. Markovets AM, Fursova AZ, Kolosova NG (2011a) Therapeutic action of the mitochondria-targeted antioxidant SkQ1 on retinopathy in OXYS rats linked with improvement of VEGF and PEDF gene expression. PLoS One 6(7):e21682. doi: 10.1371/journal.pone.0021682 PubMedCrossRefGoogle Scholar
  29. Markovets AM, Saprunova VB, Zhdankina AA et al (2011b) Alterations of retinal pigment epithelium cause AMD-like retinopathy in senescence-accelerated OXYS rats. Aging (Albany NY) 3:44–54Google Scholar
  30. Mi H, Lazareva-Ulitsky B, Loo R et al (2005) The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 33:D284–D288. doi: 10.1093/nar/gki078 PubMedCrossRefGoogle Scholar
  31. Mullins RF, Russell SR, Anderson DH, Hageman GS (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 14:835–846PubMedGoogle Scholar
  32. Neroev VV, Archipova MM, Bakeeva LE et al (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 4. Age-related eye disease. SkQ1 returns vision to blind animals. Biochemistry (Mosc) 73:1317–1328CrossRefGoogle Scholar
  33. Ohno-Matsui K (2011) Parallel findings in age-related macular degeneration and Alzheimer’s disease. Prog Retin Eye Res 30:217–238. doi: 10.1016/j.preteyeres.2011.02.004 PubMedCrossRefGoogle Scholar
  34. Relógio A, Schwager C, Richter A et al (2002) Optimization of oligonucleotide-based DNA microarrays. Nucleic Acids Res 30:e51PubMedCrossRefGoogle Scholar
  35. Rogers J, Lue L-F (2001) Microglial chemotaxis, activation, and phagocytosis of amyloid β-peptide as linked phenomena in Alzheimer’s disease. Neurochem Int 39:333–340. doi: 10.1016/S0197-0186(01)00040-7 PubMedCrossRefGoogle Scholar
  36. Saprunova VB, Pilipenko DI, Alexeevsky AV et al (2010) Lipofuscin granule dynamics during development of age-related macular degeneration. Biochemistry (Mosc) 75:130–138CrossRefGoogle Scholar
  37. Sauito Y, Sano Y, Vassar R et al (2008) X11 proteins regulate the translocation of amyloid beta-protein precursor (APP) into detergent-resistant membrane and suppress the amyloidogenic cleavage of APP by beta-site-cleaving enzyme in brain. J Biol Chem 283:35763–35771. doi: 10.1074/jbc.M801353200 CrossRefGoogle Scholar
  38. Seddon JM, Reynolds R, Yu Y et al (2011) Risk models for progression to advanced age-related macular degeneration using demographic, environmental, genetic, and ocular factors. Ophthalmology 118:2203–2211. doi: 10.1016/j.ophtha.2011.04.029 PubMedCrossRefGoogle Scholar
  39. Stefanova NA, Fursova AZ, Kolosova NG (2010) Behavioral effects induced by mitochondria-targeted antioxidant SkQ1 in Wistar and senescence-accelerated OXYS rats. J Alzheimers Dis. doi: 10.3233/JAD-2010-091675 PubMedGoogle Scholar
  40. Stefanova NA, Fursova AZ, Sarsenbaev KN, Kolosova NG (2011) Effects of Cistanche deserticola on behavior and signs of cataract and retinopathy in senescence-accelerated OXYS rats. J Ethnopharmacol 138:624–632. doi: 10.1016/j.jep.2011.10.017 PubMedCrossRefGoogle Scholar
  41. Verdugo RA, Farber CR, Warden CH, Medrano JF (2010) Serious limitations of the QTL/microarray approach for QTL gene discovery. BMC Biol 8:96. doi: 10.1186/1741-7007-8-96 PubMedCrossRefGoogle Scholar
  42. Yazawa H, Yu ZX, Takeda et al (2001) Beta amyloid peptide (Abeta42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillar aggregates in macrophages. FASEB J 15:2454–2462. doi: 10.1096/fj.01-0251com PubMedCrossRefGoogle Scholar
  43. Yoshida T, Ohno-Matsui K, Ichinose S et al (2005) The potential role of amyloid beta in the pathogenesis of age-related macular degeneration. J Clin Invest 115:2793–2800. doi: 10.1172/JCI24635 PubMedCrossRefGoogle Scholar
  44. Zhdankina AA, Fursova AZ, Logvinov SV, Kolosova NG (2008) Clinical and morphological characteristics of chorioretinal degeneration in early aging OXYS rats. Bull Exp Biol Med 146:455–458PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Oyuna S. Kozhevnikova
    • 1
  • Elena E. Korbolina
    • 1
  • Natalia A. Stefanova
    • 1
  • Natalia A. Muraleva
    • 1
  • Yuriy L. Orlov
    • 1
  • Nataliya G. Kolosova
    • 1
  1. 1.Institute of Cytology and Genetics, SB RASNovosibirskRussia

Personalised recommendations