Advertisement

Biogerontology

, Volume 14, Issue 3, pp 261–272 | Cite as

Circulating levels of adipokines and IGF-1 are associated with skeletal muscle strength of young and old healthy subjects

  • Laura Bucci
  • Stella Lukas Yani
  • Cristina Fabbri
  • Astrid Y. Bijlsma
  • Andrea B. Maier
  • Carel G. Meskers
  • Marco V. Narici
  • David A. Jones
  • Jamie S. McPhee
  • Enn Seppet
  • Helena Gapeyeva
  • Mati Pääsuke
  • Sarianna Sipilä
  • Vuokko Kovanen
  • Lauri Stenroth
  • Antonio Musarò
  • Jean-Yves Hogrel
  • Yoann Barnouin
  • Gillian Butler-Browne
  • Miriam Capri
  • Claudio Franceschi
  • Stefano SalvioliEmail author
Research Article

Abstract

It is known that adipose tissue mass increases with age, and that a number of hormones, collectively called adipokines, are produced by adipose tissue. For most of them it is not known whether their plasmatic levels change with age. Moreover, it is known that adipose tissue infiltration in skeletal muscle is related to sarcopenia and loss of muscle strength. In this study we investigated the age-related changes of representative adipokines and insulin-like growth factor (IGF)-1 and their effect on muscle strength. We studied the association between circulating levels of adiponectin, leptin, resistin and IGF-1 and muscle strength. This cross-sectional study included 412 subjects of different age (152 subjects aged 18–30 years and 260 subjects aged 69–81 years) recruited within the framework of the European research network project “Myoage”. The levels of adiponectin (both in male and female subjects) and leptin (only in males) were significantly higher in old subjects compared to young, while those of IGF-1 were lower in old subjects. In old subjects adiponectin, resistin and the resistin/IGF-1 ratio (but not IGF-1 alone) were inversely associated with quadriceps torque, while only adiponectin was inversely associated with handgrip strength independently from percentage of fat mass, height, age, gender and geographical origin. The ratio of leptin to adiponectin was directly associated with handgrip strength in both young and old subjects. These results suggest that in humans the age-associated loss of strength is associated with the levels of representative adipokines and IGF-1.

Keywords

Muscle aging Adipokines IGF-1 Muscle strength Sarcopenia Loss of strength 

Notes

Acknowledgments

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2011) under Grant agreement no. 223576 (MYOAGE) to C. F., M. N., A. B. M., Sa. Si., A. M., and G. B. B. The authors wish to thank Dr. Jaan Ereline, Dr. Tatjana Kums, MSc Herje Aibats, and M. van der Bij for technical help in the study.

References

  1. Ai M, Otokozawa S, Asztalos BF, White CC, Cupples LA, Nakajima K, Lamon-Fava S, Wilson PW, Matsuzawa Y, Schaefer EJ (2011) Adiponectin: an independent risk factor for coronary heart disease in men in the Framingham offspring study. Atherosclerosis 217(2):543–548PubMedCrossRefGoogle Scholar
  2. Alvehus M, Burén J, Sjöström M, Goedecke J, Olsson T (2010) The human visceral fat depot has a unique inflammatory profile. Obesity (Silver Spring) 18(5):879–883. doi: 10.1038/oby.2010.22 CrossRefGoogle Scholar
  3. Barbieri M, Ferrucci L, Ragno E, Corsi A, Bandinelli S, Bonafè M, Olivieri F, Giovagnetti S, Franceschi C, Guralnik JM, Paolisso G (2003) Chronic inflammation and the effect of IGF-I on muscle strength and power in older persons. Am J Physiol Endocrinol Metab 284(3):E481–E487PubMedGoogle Scholar
  4. Bonafè M, Barbieri M, Marchegiani F, Olivieri F, Ragno E, Giampieri C, Mugianesi E, Centurelli M, Franceschi C, Paolisso G (2003) Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metab 88(7):3299–3304PubMedCrossRefGoogle Scholar
  5. Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, Harrington LM, Miller KK (2011) Adiponectin is inversely associated with intramyocellular and intrahepatic lipids in obese premenopausal women. Obesity (Silver Spring) 19(5):911–916. doi: 10.1038/oby.2010.296 CrossRefGoogle Scholar
  6. Butler J, Kalogeropoulos A, Georgiopoulou V, de Rekeneire N, Rodondi N, Smith AL, Hoffmann U, Kanaya A, Newman AB, Kritchevsky SB, Vasan RS, Wilson PW, Harris TB, Health ABC Study (2009) Serum resistin concentrations and risk of new onset heart failure in older persons: the health, aging, and body composition (Health ABC) study. Arterioscler Thromb Vasc Biol 29(7):1144–1149. doi: 10.1161/ATVBAHA.109.186783 PubMedCrossRefGoogle Scholar
  7. Chen YH, Hung PF, Kao YH (2005) IGF-I downregulates resistin gene expression and protein secretion. Am J Physiol Endocrinol Metab 288(5):E1019–E1027PubMedCrossRefGoogle Scholar
  8. Duncan BB, Schmidt MI, Pankow JS, Bang H, Couper D, Ballantyne CM, Hoogeveen RC, Heiss G (2004) Adiponectin and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 53:2473–2478PubMedCrossRefGoogle Scholar
  9. Dyck DJ (2009) Adipokines as regulators of muscle metabolism and insulin sensitivity. Appl Physiol Nutr Metab 34(3):396–402. doi: 10.1139/H09-037 PubMedCrossRefGoogle Scholar
  10. Fantuzzi G (2005) Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 115(5):911–919PubMedCrossRefGoogle Scholar
  11. Fantuzzi G (2009) Three questions about leptin and immunity. Brain Behav Immun 23(4):405–410. doi: 10.1016/j.bbi.2008.10.007 PubMedCrossRefGoogle Scholar
  12. Fried SK, Ricci MR, Russell CD, Laferrère B (2000) Regulation of leptin production in humans. J Nutr 130(12):3127S–3131SPubMedGoogle Scholar
  13. Fu Y, Luo N, Klein RL, Garvey WT (2005) Adiponectin promotes adipocytes differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res 46(7):1369–1379PubMedCrossRefGoogle Scholar
  14. Giovannini S, Marzetti E, Borst SE, Leeuwenburgh C (2008) Modulation of GH/IGF-1 axis: potential strategies to counteract sarcopenia in older adults. Mech Ageing Dev 129(10):593–601. doi: 10.1016/j.mad.2008.08.001 PubMedCrossRefGoogle Scholar
  15. Hajer GR, van Haeften TW, Visseren FL (2008) Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 29(24):2959–2971. doi: 10.1093/eurheartj/ehn387 PubMedCrossRefGoogle Scholar
  16. Harman-Boehm I, Blüher M, Redel H, Sion-Vardy N, Ovadia S, Avinoach E, Shai I, Klöting N, Stumvoll M, Bashan N, Rudich A (2007) Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab 92(6):2240–2247PubMedCrossRefGoogle Scholar
  17. Harwood HJ Jr (2012) The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology 63(1):57–75. doi: 10.1016/j.neuropharm.2011.12.010 PubMedCrossRefGoogle Scholar
  18. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R (2004) The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 52(1):80–85PubMedCrossRefGoogle Scholar
  19. Jørgensen SB, Honeyman J, Oakhill JS, Fazakerley D, Stöckli J, Kemp BE, Steinberg GR (2009) Oligomeric resistin impairs insulin and AICAR-stimulated glucose uptake in mouse skeletal muscle by inhibiting GLUT4 translocation. Am J Physiol Endocrinol Metab 297(1):E57–E66. doi: 10.1152/ajpendo.90744.2008 PubMedCrossRefGoogle Scholar
  20. Kizer JR, Arnold AM, Strotmeyer ES, Ives DG, Cushman M, Ding J, Kritchevsky SB, Chaves PH, Hirsch CH, Newman AB (2010) Change in circulating adiponectin in advanced old age: determinants and impact on physical function and mortality. The cardiovascular health study all stars study. J Gerontol A Biol Sci Med Sci 65(11):1208–1214. doi: 10.1093/gerona/glq122 PubMedCrossRefGoogle Scholar
  21. Koster A, Ding J, Stenholm S, Caserotti P, Houston DK, Nicklas BJ, You T, Lee JS, Visser M, Newman AB, Schwartz AV, Cauley JA, Tylavsky FA, Goodpaster BH, Kritchevsky SB, Harris TB, Health ABC study (2011) Does the amount of fat mass predict age-related loss of lean mass, muscle strength, and muscle quality in older adults? J Gerontol A Biol Sci Med Sci 66(8):888–895. doi: 10.1093/gerona/glr070 PubMedCrossRefGoogle Scholar
  22. Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, Corsi AM, Rantanen T, Guralnik JM, Ferrucci L (2003) Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol 95:1851–1860PubMedGoogle Scholar
  23. Long YC, Zierath JR (2006) AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 116(7):1776–1783PubMedCrossRefGoogle Scholar
  24. Marcus RL, Addison O, Dibble LE, Foreman KB, Morrell G, Lastayo P (2012) Intramuscular adipose tissue, sarcopenia, and mobility function in older individuals. J Aging Res. doi: 10.1155/2012/629637 Google Scholar
  25. Martinez-Gomez D, Eisenmann JC, Gomez-Martinez S, Veses A, Romeo J, Veiga OL, Marcos A (2012) AFINOS Study Group. Associations of physical activity and fitness with adipocytokines in adolescents: the AFINOS Study. Nutr Metab Cardiovasc Dis 22(3):252–259PubMedCrossRefGoogle Scholar
  26. McPhee JS, Hogrel JY, Maier AB, Seppet E, Seynnes OR, Sarianna Sipilä S, Bottinelli R, Barnouin Y, Bijlsma AY, Gapeyeva H, Maden-Wilkinson TM, GM Meskers CGM, Pääsuke M, Sillanpää E, Lauri Stenroth L, Butler-Browne G, Narici MV, Jones DA (2013) Physiological and Functional Evaluation of Healthy Young and Older Men and Women: design of the European MyoAge Study. Biogerontology (in press)Google Scholar
  27. Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M (2012) Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol 3:260. doi: 10.3389/fphys.2012.00260 PubMedCrossRefGoogle Scholar
  28. Moon B, Kwan JJ, Duddy N, Sweeney G, Begum N (2003) Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation. Am J Physiol Endocrinol Metab 285(1):E106–E115PubMedGoogle Scholar
  29. Morley JE (2012) Sarcopenia in the elderly. Fam Pract 29(Suppl 1):i44–i48. doi: 10.1093/fampra/cmr063 PubMedCrossRefGoogle Scholar
  30. Ostan R, Bucci L, Cevenini E, Palmas MG, Pini E, Scurti M, Vescovini R, Caruso C, Mari D, Vitale G, Franceschi C, Monti D (2012). Metabolic syndrome in the offspring of centenarians: focus on prevalence, components, and adipokines. Age (Dordr). doi: 10.1007/s11357-012-9483-x
  31. Persson J, Folkersen L, Ekstrand J, Helleberg J, Gabrielsen A, Lundman P, Hedin U, Paulsson-Berne G (2012) High plasma adiponectin concentration is associated with all-cause mortality in patients with carotid atherosclerosis. Atherosclerosis 225(2):491–496PubMedCrossRefGoogle Scholar
  32. Pisto P, Santaniemi M, Turpeinen JP, Ukkola O, Kesäniemi YA (2012) Adiponectin concentration in plasma is associated with muscle fiber size in healthy middle-aged men. Scand J Clin Lab Invest 72(5):395–402. doi: 10.3109/00365513.2012.687759 PubMedCrossRefGoogle Scholar
  33. Pravenec M, Kazdová L, Landa V, Zidek V, Mlejnek P, Jansa P, Wang J, Qi N, Kurtz TW (2003) Transgenic and recombinant resistin impair skeletal muscle glucose metabolism in the spontaneously hypertensive rat. J Biol Chem 278(46):45209–45215PubMedCrossRefGoogle Scholar
  34. Prestes J, Shiguemoto G, Botero JP, Frollini A, Dias R, Leite R, Pereira G, Magosso R, Baldissera V, Cavaglieri C, Perez S (2009) Effects of resistance training on resistin, leptin, cytokines, and muscle force in elderly post-menopausal women. J Sports Sci 27(14):1607–1615. doi: 10.1080/02640410903352923 PubMedCrossRefGoogle Scholar
  35. Qi Q, Wang J, Li H, Yu Z, Ye X, Hu FB, Franco OH, Pan A, Liu Y, Lin X (2008) Associations of resistin with inflammatory and fibrinolytic markers, insulin resistance, and metabolic syndrome in middle-aged and older Chinese. Eur J Endocrinol 159(5):585–593. doi: 10.1530/EJE-08-0427 PubMedCrossRefGoogle Scholar
  36. Satoh H, Nguyen MT, Miles PD, Imamura T, Usui I, Olefsky JM (2004) Adenovirus-mediated chronic “hyper-resistinemia” leads to in vivo insulin resistance in normal rats. J Clin Invest 114(2):224–231PubMedGoogle Scholar
  37. Sheng CH, Du ZW, Song Y, Wu XD, Zhang YC, Wu M, Wang Q, Zhang GZ (2013) Human resistin inhibits myogenic differentiation and induces insulin resistance in myocytes. Biomed Res Int 2013:804632. doi: 10.1155/2013/804632 PubMedGoogle Scholar
  38. Steinberg GR, Parolin ML, Heigenhauser GJ, Dyck DJ (2002) Leptin increases FA oxidation in lean but not obese human skeletal muscle: evidence of peripheral leptin resistance. Am J Physiol Endocrinol Metab 283(1):E187–E192PubMedGoogle Scholar
  39. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA (2001) The hormone resistin links obesity to diabetes. Nature 409(6818):307–312PubMedCrossRefGoogle Scholar
  40. Taekema DG, Gussekloo J, Maier AB, Westendorp RG, de Craen AJ (2010) Handgrip strength as a predictor of functional, psychological and social health. A prospective population-based study among the oldest old. Age Ageing 39:331–337. doi: 10.1093/ageing/afq022 PubMedCrossRefGoogle Scholar
  41. Taekema DG, Ling CH, Blauw GJ, Meskers CG, Westendorp RG, de Craen AJ, Maier AB (2011) Circulating levels of IGF1 are associated with muscle strength in middle-aged- and oldest-old women. Eur J Endocrinol 164(2):189–196. doi: 10.1530/EJE-10-0703 PubMedCrossRefGoogle Scholar
  42. Tschritter O, Fritsche A, Thamer C, Haap M, Shirkavand F, Rahe S, Staiger H, Maerker E, Haring H, Stumvoll M (2003) Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism. Diabetes 52:239–243PubMedCrossRefGoogle Scholar
  43. Vitale G, Brugts MP, Ogliari G, Castaldi D, Fatti LM, Varewijck AJ, Lamberts SW, Monti D, Bucci L, Cevenini E, Cavagnini F, Franceschi C, Hofland LJ, Mari D, Janssen J (2012) Low circulating IGF-I bioactivity is associated with human longevity: findings in centenarians’ offspring. Aging (Albany NY) 4(9):580–589Google Scholar
  44. Vu V, Riddell MC, Sweeney G (2007) Circulating adiponectin and adiponectin receptor expression in skeletal muscle: effects of exercise. Diabetes Metab Res Rev 23(8):600–611PubMedCrossRefGoogle Scholar
  45. Wallace AM, McMahon AD, Packard CJ, Kelly A, Shepherd J, Gaw A, Sattar N (2001) Plasma leptin and the risk of cardiovascular disease in the west of Scotland coronary prevention study (WOSCOPS). Circulation 104(25):3052–3056PubMedCrossRefGoogle Scholar
  46. Wilkes EA, Selby AL, Atherton PJ, Patel R, Rankin D, Smith K, Rennie MJ (2009) Blunting of insulin inhibition of proteolysis in legs of older subjects may contribute to age-related sarcopenia. Am J Clin Nutr 90(5):1343–1350. doi: 10.3945/ajcn.2009.27543 PubMedCrossRefGoogle Scholar
  47. Yamamoto Y, Hirose H, Saito I, Nishikai K, Saruta T (2004) Adiponectin, an adipocyte-derived protein, predicts future insulin resistance: two-year follow-up study in Japanese population. J Clin Endocrinol Metab 89:87–90PubMedCrossRefGoogle Scholar
  48. Zhang MH, Na B, Schiller NB, Whooley MA (2010) Resistin, exercise capacity, and inducible ischemia in patients with stable coronary heart disease: data from the Heart and Soul study. Atherosclerosis 213(2):604–610PubMedCrossRefGoogle Scholar
  49. Zhou Q, Du J, Hu Z, Walsh K, Wang XH (2007) Evidence for adipose-muscle cross talk: opposing regulation of muscle proteolysis by adiponectin and Fatty acids. Endocrinol 148(12):5696–5705Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Laura Bucci
    • 1
  • Stella Lukas Yani
    • 1
  • Cristina Fabbri
    • 1
  • Astrid Y. Bijlsma
    • 2
    • 3
  • Andrea B. Maier
    • 3
  • Carel G. Meskers
    • 4
  • Marco V. Narici
    • 5
  • David A. Jones
    • 5
  • Jamie S. McPhee
    • 6
  • Enn Seppet
    • 7
  • Helena Gapeyeva
    • 7
  • Mati Pääsuke
    • 7
  • Sarianna Sipilä
    • 8
  • Vuokko Kovanen
    • 8
  • Lauri Stenroth
    • 8
    • 9
  • Antonio Musarò
    • 10
  • Jean-Yves Hogrel
    • 11
  • Yoann Barnouin
    • 11
  • Gillian Butler-Browne
    • 11
  • Miriam Capri
    • 1
  • Claudio Franceschi
    • 1
  • Stefano Salvioli
    • 1
    Email author
  1. 1.Department of Experimental, Diagnostic and Specialty Medicine and CIG—Interdepartmental Centre L. GalvaniUniversity of BolognaBolognaItaly
  2. 2.Department of Gerontology and GeriatricsLeiden University Medical CenterLeidenThe Netherlands
  3. 3.Department of Internal Medicine, Section of Gerontology and GeriatricsVU University Medical CenterAmsterdamThe Netherlands
  4. 4.Department of Rehabilitation MedicineLeiden University Medical CenterLeidenThe Netherlands
  5. 5.School of Healthcare ScienceManchester Metropolitan UniversityManchesterUK
  6. 6.University of Nottingham, The Medical School, Royal Derby HospitalDerbyUK
  7. 7.Biomedicine Institute and Institute of Exercise Biology and PhysiotherapyUniversity of TartuTartuEstonia
  8. 8.Gerontology Research Center, Department of Health SciencesUniversity of JyväskyläJyväskyläFinland
  9. 9.Department of Biology of Physical ActivityUniversity of JyväskyläJyväskyläFinland
  10. 10.Institute Pasteur Cenci-Bolognetti, DAHFMO—Unit of Histology and Medical Embryology, Istituto Italiano di Tecnologia, IIMSapienza University of RomeRomeItaly
  11. 11.Inserm, U974, CNRS, UMR7215, UM76, Institut de Myologie, Université Pierre et Marie Curie, Paris 6ParisFrance

Personalised recommendations