, Volume 14, Issue 3, pp 231–245 | Cite as

Sex hormones and skeletal muscle weakness

  • Sarianna SipiläEmail author
  • Marco Narici
  • Michael Kjaer
  • Eija Pöllänen
  • Ross A. Atkinson
  • Mette Hansen
  • Vuokko Kovanen


Human ageing is accompanied with deterioration in endocrine functions the most notable and well characterized of which being the decrease in the production of sex hormones. Current research literature suggests that low sex hormone concentration may be among the key mechanism for sarcopenia and muscle weakness. Within the European large scale MYOAGE project, the role of sex hormones, estrogens and testosterone, in causing the aging-related loss of muscle mass and function was further investigated. Hormone replacement therapy (HRT) in women is shown to diminish age-associated muscle loss, loss in fast muscle function (power), and accumulation of fat in skeletal muscle. Further HRT raises the protein synthesis rate in skeletal muscle after resistance training, and has an anabolic effect upon connective tissue in both skeletal muscle and tendon, which influences matrix structure and mechanical properties. HRT influences gene expression in e.g. cytoskeletal and cell–matrix proteins, has a stimulating effect upon IGF-I, and a role in IL-6 and adipokine regulation. Despite low circulating steroid-hormone level, postmenopausal women have a high local concentration of steroidogenic enzymes in skeletal muscle.


MYOAGE Ageing Hormone replacement therapy Steroids Postmenopause 



We acknowledge the support from EC FP7 Collaborative Project MYOAGE (GA-223576) for these studies. The Academy of Finland and Finnish Ministry of Culture and Education are acknowledged for support to the RCT and TWIN STUDIES. In testosterone studies we acknowledge support from Bayer Schering Pharma AG, Berlin, Germany, and Laboratories Besins International, Paris, France, for providing Testogel and placebo. We also thank Prof. Frederick Wu, Dr U. Srinivas-Shankar and and Dr Steve Roberts for their collaboration. Gerontology Research Center is a joint effort between the University of Jyväskylä and the University of Tampere, Finland.


  1. Ahtiainen M, Alén M, Pöllänen E, Pulkkinen S, Ronkainen PHA, Kujala UM, Kaprio J, Sipilä S, Kovanen V (2012a) Hormone therapy is associated with better body composition and adipokine/glucose profiles: a study with monozygotic co-twin control design. Menopause 19:1329–1335PubMedCrossRefGoogle Scholar
  2. Ahtiainen M, Pöllänen E, Ronkainen P, Alén M, Puolakka J, Kaprio J, Sipilä S, Kovanen V (2012b) Age and estrogen-based hormone therapy affect systemic and local IL-6 and IGF-1 pathways in women. AGE (Dordr) 34:1249–1260CrossRefGoogle Scholar
  3. Aizawa K, Iemitsu M, Maeda S, Jesmin S, Otsuki T, Mowa CN, Miyauchi T, Mesaki N (2007) Expression of steroidogenic enzymes and synthesis of sex steroid hormones from DHEA in skeletal muscle of rats. Am J Physiol Endocrinol Metab 292:E577–E584PubMedCrossRefGoogle Scholar
  4. American Society of Andrology (ASA) (2006) Testosterone replacement therapy for male aging:ASA position statement. J Androl 27(2):133–134Google Scholar
  5. Atkinson RA, Srinivas-Shankar U, Roberts SA, Connolly MJ, Adams JE, Oldham JA, Wu FCW, Seynnes OR, Stewart CEH, Maganaris C, Narici MV (2010) Effects of testosterone on skeletal muscle architecture in intermediate frail and frail elderly men. J Geront A Biol Sci Med Sci 65:1215–1219CrossRefGoogle Scholar
  6. Baltgalvis KA, Greising SM, Warren GL, Lowe DA (2010) Estrogen regulates estrogen receptors and antioxidant gene expression in mouse skeletal muscle. PLoS ONE 5:e10164PubMedCrossRefGoogle Scholar
  7. Basaria S, Coviello AD, Travison TG, Storer TW, Farwell WR, Jettle AM, Eder R, Tennstedt S, Ulloor J, Zhang A, Choong K, Lakshman KM, Mazer NA, Miciek R, Krasnoff J, Elmi A, Knapp PE, Brooks B, Appleman E, Aggarwal S, Bhasin G, Hede-Brierley L, Bhatia A, Collins L, LeBrasseur N, Fiore LD, Bhasin S (2010) Adverse events associated with testosterone administration. N Eng J Med 363:109–122CrossRefGoogle Scholar
  8. Bellantoni MF, Vittone J, Campfield AT, Bass KM, Harman SM, Blackman MR (1996) Effects of oral versus transdermal estrogen on the growth hormone/insulin-like growth factor I axis in younger and older postmenopausal women: a clinical research center study. J Clin Endocrinol Metab 81:2848–2853PubMedCrossRefGoogle Scholar
  9. Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, Bunnell TJ, Tricker R, Shirazi A, Casaburi R (1996) The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Eng J Med 335:1–7CrossRefGoogle Scholar
  10. Bhasin S, Storer TW, Berman N, Yarasheski KE, Clevenger B, Phillips J, Lee WP, Bunnell TJ, Casaburi R (1997) Testosterone replacement increases fat-free mass and muscle size in hypogonadal men. J Clin Endocrinol Metab 82:407–413PubMedCrossRefGoogle Scholar
  11. Bhasin S, Woodhouse L, Casaburi R, Singh AB, Mac RP, Lee M, Yarasheski KE, Sinha-Hikim I, Dzekov C, Dzekov J, Magliano L, Storer TW (2005) Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle. J Clin Endocrinol Metab 90:678–688PubMedCrossRefGoogle Scholar
  12. Bolster DR, Jefferson LS, Kimball SR (2004) Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid- and exercise-induced signalling. Proc Nutr Soc 63:351–356PubMedCrossRefGoogle Scholar
  13. Campagnoli C, Biglia N, Altare F, Lanza MG, Lesca L, Cantamessa C, Peris C, Fiorucci GC, Sismondi P (1993) Differential effects of oral conjugated estrogens and transdermal estradiol on insulin-like growth factor 1, growth hormone and sex hormone binding globulin serum levels. Gynecol Endocrinol 7:251–258PubMedCrossRefGoogle Scholar
  14. Carbone F, La Rocca C, Matarese G (2012) Immunological functions of leptin and adiponectin. Biochimie 94:2082–2088PubMedCrossRefGoogle Scholar
  15. Cook JL, Bass SL, Black JE (2007) Hormone therapy is associated with smaller Achilles tendon diameter in active post-menopausal women. Scand J Med Sci Sports 17:128–132PubMedCrossRefGoogle Scholar
  16. Doessing S, Heinemeier KM, Holm L, Mackey AL, Schjerling P, Rennie M, Smith K, Reitelseder S, Kappelgaard AM, Rasmussen MH, Flyvbjerg A, Kjaer M (2010) Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis. J Physiol 588:341–351PubMedCrossRefGoogle Scholar
  17. Dubois V, Laurent M, Boonen S, Vanderschueren D, Claessens F (2012) Androgens and skeletal muscle: cellular and molecular action mechanisms underlying the anabolic actions. Cell Mol Life Sci 69:1651–1667PubMedCrossRefGoogle Scholar
  18. Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, Bremner WJ, McKinlay JB (2002) Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab 87:589–598PubMedCrossRefGoogle Scholar
  19. Ferrando AA, Tipton KD, Doyle D, Phillips SM, Cortiella J, Wolfe RR (1998) Testosterone injection stimulates net protein synthesis but not tissue amino acid transport. Am J Physiol 275:E864–E871PubMedGoogle Scholar
  20. Ferrando AA, Sheffield-Moore M, Yeckel CW, Gilkison C, Jiang J, Achacosa A, Lieberman SA, Tipton K, Wolfe RR, Urban RJ (2002) Testosterone administration to older men improves muscle function: molecular and physiological mechanisms. Am J Physiol Endocrinol Metab 282:E601–E607PubMedGoogle Scholar
  21. Ferrucci l, Penninx BW, Volpato S, Harris TB, Bandeen-Roche K, Bal four J, Leveille SG, Fried LP, Md JM (2002) Change in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels. J Am Geriatr Soc 50:1947–1954PubMedCrossRefGoogle Scholar
  22. Finni T, Noorkoiv M, Pöllänen E, Ronkainen PH, Alén M, Kaprio J, Kovanen V, Sipilä S (2011) Muscle function in monozygotic female twin pairs discordant for hormone replacement therapy. Muscle Nerve 44:769–775PubMedCrossRefGoogle Scholar
  23. Franceschi C, Bonafe M, Valensin S, olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective in immunosenescence. Ann NY Acad Sci 908:244–254PubMedCrossRefGoogle Scholar
  24. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Semman T, Tracy R, Kop WJ, Burke G, McBurnie MA, Cardiovascular Health Study Collaborative Research Group (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56:M146–M156PubMedCrossRefGoogle Scholar
  25. Gray A, Feldman HA, McKinlay JB, Longcope C (1991) Age, disease, and changing sex hormone levels in middle-aged men: results of the Massachusetts Male Aging Study. J Clin Endocrinol Metab 73:1016–1025PubMedCrossRefGoogle Scholar
  26. Greenblum CA, Rowe MA, Neff DF, Greenblum JS (2012) Midlife women: symptoms associated with menopausal transition and early postmenopause and quality of life. Menopause Aug 27. [Epub ahead of print]Google Scholar
  27. Greising SM, Baltgalvis KA, Lowe DA, Warren GL (2009) Hormone therapy and skeletal muscle strength: a meta-analysis. J Gerontol A Biol Sci Med Sci 64:1071–1081PubMedCrossRefGoogle Scholar
  28. Hansen M, Kongsgaard M, Holm L, Skovgaard D, Magnusson SP, Qvortrup K, Larsen JO, Dahl M, Serup A, Frystyk J, Flyvbjerg A, Langberg H, Kjaer M (2009) Effect of estrogen on tendon collagen synthesis, tendon structural characteristics, and biomechanical properties in postmenopausal women. J Appl Physiol 106:1385–1393PubMedCrossRefGoogle Scholar
  29. Hansen M, Boesen A, Holm L, Flyvbjerg A, Langberg H, Kjaer M (2012a) Local administration of insulin-like growth factor-I (IGF-I) stimulates tendon collagen synthesis in humans. Scand J Med Sci Sport jan 31. [Epub ahead of print]Google Scholar
  30. Hansen M, Skovgaard D, Reitelseder S, Holm L, Langberg H, Kjaer M (2012b) Effects of estrogen replacement and lower androgen status on skeletal muscle collagen and myofibrillar protein synthesis in postmenopausal women. J Gerontol A Biol Sci Med Sci 67:1005–1013PubMedCrossRefGoogle Scholar
  31. Harman SM, Metter J, Tobin JD, Pearson J, Blackman MR (2001) Longitudinal effects of aging on serum total and free testosterone levels in healthy men. J Clin Endocrinol Metab 86:724–731PubMedCrossRefGoogle Scholar
  32. Herbst KL, Bhasin S (2004) Testosterone action on skeletal muscle. Curr Opin Clin Nutr Metab Care 7:271–277PubMedCrossRefGoogle Scholar
  33. Isensee J, Meoli L, Zazzu V, Nabzdyk C, Witt H, Soewarto D, Effertz K, Fuchs H, Gailus-Durner V, Busch D, Adler T, de Angelis MH, Irgang M, Otto C, Noppinger PR (2009) Expression pattern of G protein-coupled receptor 30 in LacZ reporter mice. Endocrinology 150:1722–1730PubMedCrossRefGoogle Scholar
  34. Kadi F, Bonnerud P, Eriksson A, Thornell LE (2000) The expression of androgen receptors in human neck and limb muscles: effects of training and administration of androgenic-anabolic steroids. Histochem Cell Biol 113:25–29PubMedCrossRefGoogle Scholar
  35. Kawakami Y, Abe T, Fukunaga T (1993) Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol 74:2740–2744PubMedGoogle Scholar
  36. Labrie F, Belanger A, Luu-The V, Labrie C, Simard J, Cusan L, Gomez JL, Candas B (1998) DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: its role during aging. Steroids 63:322–328PubMedCrossRefGoogle Scholar
  37. Larionov AA, Vasyliev DA, Mason JI, Howie AF, Berstein LM, Miller WR (2003) Aromatase in skeletal muscle. J Steroid Biochem Mol Biol 84:485–492PubMedCrossRefGoogle Scholar
  38. Lemoine S, Granier P, Tiffoche C, Rannou-Bekono F, Thieulant ML, Delamarche P (2003) Estrogen receptor alpha mRNA in human skeletal muscles. Med Sci Sports Exerc 35:439–443PubMedCrossRefGoogle Scholar
  39. Maggiolini M, Picard D (2010) The unfolding stories of GPR30, a new membrane-bound estrogen receptor. J Endocrinol 204:105–114PubMedCrossRefGoogle Scholar
  40. Matsumoto A (2002) Andropause: clinical implications of the decline in serum testosterone levels with aging in men. J Gerontol A Biol Sci Med Sci 57:M76–M99PubMedCrossRefGoogle Scholar
  41. Matthews J, Gustafsson J-Å (2003) Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol Interv 3:281–292PubMedCrossRefGoogle Scholar
  42. Moalli PA, Talarico LC, Sung VW, Klingensmith WL, Shand SH, Meyn LA, Watkins SC (2004) Impact of menopause on collagen subtypes in the arcus tendineous fasciae pelvis. Am J Obstet Gynecol 190:620–627PubMedCrossRefGoogle Scholar
  43. Mohler ML, Bohl CE, Jones A, Coss CC, Narayanan R, He Y, Hwang DJ, Dalton JT, Miller DD (2009) Nonsteroidal selective androgen receptor modulators (SARMs): dissociating the anabolic and androgenic activities of the androgen receptor for therapeutic benefit. J Med Chem 52:3597–3617PubMedCrossRefGoogle Scholar
  44. Monks DA, O’Bryant EL, Jordan CL (2004) Androgen receptor immunoreactivity in skeletal muscle: enrichment at the neuromuscular junction. J Comp Neurol 473:59–72PubMedCrossRefGoogle Scholar
  45. Niu J, Kolattukudy PE (2009) Role of MCP-1 in cardiovasculara disease: molecular mechanisms and clinical implications. Clin Sci (Lond) 117:95–109CrossRefGoogle Scholar
  46. Osakabe T, Hayashi M, Hasegawa K, Okuaki T, Ritty TM, Mecham RP, Wachi H, Seyama Y (2001) Age- and gender-related changes in ligament components. Ann Clin Biochem 38:527–532PubMedCrossRefGoogle Scholar
  47. Ottenbacher KJ, Ottenbachter ME, Ottenbachter AJ, Acha AA, Ostir GV (2006) Androgen treatment and muscle strength in elderly men: a meta-analysis. J Am Ger Soc 54:1666–1673CrossRefGoogle Scholar
  48. Pfeilschifter J, Koditz R, Pfohl M, Schatz H (2002) Changes in proinflammatory cytokine activity after menopause. Endocr Rev 23:90–119PubMedCrossRefGoogle Scholar
  49. Pingel J, Langberg H, Skovgaard D, Koskinen S, Flyvbjerg A, Frystyk J, Kjaer M, Hansen M (2012) Effects of transdermal estrogen on collagen turnover at rest and in response to exercise in postmenopausal women. J Appl Physiol 113:1040–1047PubMedCrossRefGoogle Scholar
  50. Pöllänen E, Ronkainen PHA, Suominen H, Takala T, Koskinen S, Puolakka J, Sipilä S, Kovanen V (2007) Muscular transcriptome in postmenopausal women with and without hormone replacement. Rejuvenation Res 10:485–500PubMedCrossRefGoogle Scholar
  51. Pöllänen E, Fey V, Törmäkangas T, Ronkainen PHA, Taaffe D, Takala T, Koskinen S, Cheng S, Puolakka J, Kujala UM, Suominen H, Sipilä S, Kovanen V (2010a) Power training and postmenopausal hormone therapy affect transcriptional control of specific co-regulated gene clusters in skeletal muscle. AGE (Dordr) 32:347–363CrossRefGoogle Scholar
  52. Pöllänen E, Ronkainen PHA, Horttanainen M, Takala T, Puolakka J, Suominen H, Sipilä S, Kovanen V (2010b) Effects of combined hormone replacement therapy or its effective agents on the IGF-1 pathway in skeletal muscle. Growth Hormon IGF Res 20:375–379CrossRefGoogle Scholar
  53. Pöllänen E, Sipilä S, Alen M, Ronkainen PH, Ankarberg-Lindgren C, Puolakka J, Suominen H, Hämäläinen E, Turpeinen U, Konttinen YT, Kovanen V (2011) Differential influence of peripheral and systemic sex steroids on skeletal muscle quality in pre- and postmenopausal women. Aging Cell 10:650–660PubMedCrossRefGoogle Scholar
  54. Rannevik G, Jeppsson S, Johnell O, Bjerre B, Laurell-Borulf Y, Svanberg L (2008) A longitudinal study of the perimenopausal transition: altered profiles of steroid and pituitary hormones, SHBG and bone mineral density. Maturitas 61:67–77PubMedCrossRefGoogle Scholar
  55. Rattan SI (2006) Theories of biological aging: genes, proteins, and free radicals. Free Radical Res 40:1230–1238CrossRefGoogle Scholar
  56. Rattan SI (2008) Increased molecular damage and heterogeneity as the basis of aging. Biol Chem 389:267–272PubMedCrossRefGoogle Scholar
  57. Rattan SI (2012) Biogerontology: from here to where? the lord cohen medal lecture-2011. Biogerontology 13:83–91PubMedCrossRefGoogle Scholar
  58. Razandi M, Pedram A, Greene GL, Levin ER (1999) Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERalpha and ERbeta expressed in Chinese hamster ovary cells. Mol Endocrinol 13:307–319PubMedCrossRefGoogle Scholar
  59. Reeves ND, Maganaris CN, Ferretti G, Narici MV (2005) Influence of 90-day simulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures. J Appl Physiol 98:2278–2286PubMedCrossRefGoogle Scholar
  60. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3:1009–1013PubMedCrossRefGoogle Scholar
  61. Ronkainen PH, Kovanen V, Alén M, Pöllänen E, Palonen EM, Ankarberg-Lindgren C, Hämäläinen E, Turpeinen U, Kujala UM, Puolakka J, Kaprio J, Sipilä S (2009) Postmenopausal hormone replacement therapy modifies skeletal muscle composition and function: a study with monozygotic twin pairs. J Appl Physiol 107:25–33PubMedCrossRefGoogle Scholar
  62. Ronkainen PHA, Pöllänen E, Alén M, Pitkänen R, Puolakka J, Kujala UM, Kaprio J, Sipilä S, Kovanen V (2010) Global gene expression profiles in skeletal muscle of monozygotic female twins discordant for hormone replacement therapy. Aging Cell 9:1098–1110PubMedCrossRefGoogle Scholar
  63. Seynnes OR, de Boer M, Narici MV (2007) Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol 102:368–373PubMedCrossRefGoogle Scholar
  64. Sheffield-Moore M, Urban RJ, Wolf SE, Jiang J, Catlin DH, Herndon DN, Wolfe RR, Ferrando AA (1999) Short-term oxandrolone administration stimulates net muscle protein synthesis in young men. J Clin Endocrinol Metab 84:2705–2711PubMedCrossRefGoogle Scholar
  65. Sih R, Morley JE, Kaiser FE, Perry HM, Patrick P, Ross C (1997) Testosterone replacement in older hypogonadal men: a 12-month randomized controlled trial. J Clin Endocriol Metab 82:1661–1667CrossRefGoogle Scholar
  66. Sinha-Hikim I, Artaza J, Woodhouse L, Gonzalez-Cadavid N, Singh AB, Lee MI, Storer TW, Casaburi R, Shen R, Bhasin S (2002) Testosterone-induced increase in muscle size in healthy young men is associated with muscle hypertrophy. Am J Physiol Endocrinol Metab 283:E154–E164PubMedGoogle Scholar
  67. Sinha-Hikim I, Roth SM, Lee MI, Bhasin S (2003) Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. Am J Physiol Endocrinol Metab 285:E197–E205PubMedGoogle Scholar
  68. Sinha-Hikim I, Taylor WE, Gonzalez-Cadavid NF, Zheng W, Bhasin S (2004) Androgen receptor in human skeletal muscle and cultured muscle satellite cells: up-regulation by androgen treatment. J Clin Endocrinol Metab 89:5245–5255PubMedCrossRefGoogle Scholar
  69. Sipilä S, Taaffe DR, Cheng S, Puolakka J, Toivanen J, Suominen H (2001) Effects of hormone replacement therapy and high-impact physical exercise on skeletal muscle in post-menopausal women: a randomized placebo-controlled study. Clin Sci (Lond) 101:147–157CrossRefGoogle Scholar
  70. Srinivas-Shankar U, Roberts SA, Connolly MJ, O’Connell MDL, Adams JE, Oldham JA, Wu FCW (2010) Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 95:639–650PubMedCrossRefGoogle Scholar
  71. Swerdloff RS, Wang C, Cunngingham G, Dobs A, Iranmanesh A, Matsumoto AM, Snyder PJ, Weber T, Longstreth J, Berman N (2000) Long-term pharmacokinetics of transdermal testosterone gel in hypogonadal men. J Clin Endocrinol Metab 85:4500–4510PubMedCrossRefGoogle Scholar
  72. Taaffe DR, Sipilä S, Cheng S, Puolakka J, Toivanen J, Suominen H (2005) The effect of hormone replacement therapy and/or exercise on skeletal muscle attenuation in postmenopausal women: a yearlong intervention. Clin Physiol Funct Imaging 25:297–304PubMedCrossRefGoogle Scholar
  73. Vermeulen A, Kaufman JM, Giagulli VA (1996) Influence of some biological indexes on sex hormone-binding globulin and androgen levels in aging or obese males. J Clin Endocrinol Metab 81:1821–1826PubMedCrossRefGoogle Scholar
  74. Vingren JL, Kraemer WJ, Hatfield DL, Anderson JM, Volek JS, Ratamess NA, Thomas GA, Ho J-Y, Fragela MS, Maresh CM (2008) Effect of resistance exercise on muscle steroidogenesis. J Appl Physiol 105:1654–1760CrossRefGoogle Scholar
  75. Wang C, Swerdloff RS, Iranmanesh A, Dobs A, Snyder PJ, Cunningham G, Matsumoto AM, Weber T, Berman N, Testosterone Gel Study Group (2000) Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men. J Clin Endocrinol Metab 85:2839–2853PubMedCrossRefGoogle Scholar
  76. Wiik A, Ekman M, Johansson O, Jansson E, Esbjornsson M (2009) Expression of both oestrogen receptor alpha and beta in human skeletal muscle tissue. Histochem Cell Biol 131:181–189PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sarianna Sipilä
    • 1
    Email author
  • Marco Narici
    • 2
  • Michael Kjaer
    • 3
  • Eija Pöllänen
    • 1
  • Ross A. Atkinson
    • 4
    • 5
  • Mette Hansen
    • 6
  • Vuokko Kovanen
    • 1
  1. 1.Gerontology Research CentreDepartment of Health Sciences, University of JyväskyläJyväskyläFinland
  2. 2.School of Graduate Entry Medicine and Health, University of NottinghamNottinghamUK
  3. 3.Department of Orthopedic SurgeryInstitute of Sports Medicine, Bispebjerg Hospital and Centre for Healthy Aging, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
  4. 4.Greater Manchester Neurosciences Centre, Salford Royal NHS Foundation TrustSalfordUK
  5. 5.Manchester Academic Health Science Centre, The University of ManchesterManchesterUK
  6. 6.Section of Sport Science, Department of Public HealthAarhus UniversityAarhusDenmark

Personalised recommendations