Biogerontology

, Volume 14, Issue 2, pp 107–119 | Cite as

Sesamin extends the mean lifespan of fruit flies

  • Yuanyuan Zuo
  • Cheng Peng
  • Yintong Liang
  • Ka Ying Ma
  • Ho Yin Edwin Chan
  • Yu Huang
  • Zhen-Yu Chen
Research Article

Abstract

The present study investigated the anti-ageing activity of sesamin and its effect on gene expression of superoxide dismutase (SOD), catalase (CAT), methuselah (Mth) and Rpn11 in Drosophila melanogaster. Results demonstrated that 0.2 % sesamin in diet prolonged the mean lifespan of OR wild fruit flies by 12 %, accompanied by up-regulation of SOD1, SOD2, CAT and Rpn11. Sesamin at 0.2 % in diet also attenuated paraquat-induced neurodegeneration with up-regulation of SOD1, SOD2 and Rpn11 in OR wild fruit flies. Supplementation of 0.2 % sesamin in diet increased the survival time of OR wild type flies and Alzheimer flies Aβ42 33769 when they were challenged with paraquat. Furthermore, sesamin-induced increase in the activity and expression of antioxidant enzymes also suggests that the longevity promoting activity of sesamin are possibly due to its action as a hormetin by inducing oxidative stress response-mediated hormesis. It was concluded that sesamin extended the mean lifespan and alleviated the neurodegeneration in Drosophila melanogaster at least mediated by its interaction with genes SOD1, SOD2, CAT, and Rpn11, but not with gene Mth.

Keywords

Ageing Hormesis Hormetin Oxidative stress 

Abbreviations

SOD1

Cu-Zn-superoxide dismutase

SOD2

Mn-superoxide dismutase

CAT

Catalase

Mth

Methuselah

GPX

Glutathione peroxidase

ROS

Reactive oxygen species

D. melanogaster

Drosophila melanogaster

References

  1. Bahadorani S, Hilliker AJ (2008) Cocoa confers life span extension in Drosophila melanogaster. Nutr Res 28:377–382PubMedCrossRefGoogle Scholar
  2. Bus JS, Gibson JE (1984) Paraquat: model for oxidant-initiated toxicity. Environ Health Perspect 55:37–46PubMedCrossRefGoogle Scholar
  3. Collins VL, Bournival J, Plouffe M, Carange J, Martinoli MG (2008) Sesamin modulates tyrosine hydroxylase, superoxide dismutase, catalase, inducible NO synthase and interleukin-6 expression in dopaminergic cells under MPP+-induced oxidative stress. Oxid Med Cell Longev 1(1):54–62CrossRefGoogle Scholar
  4. Comfort A, Youyouhotsky-gore I, Pathmanathan K (1971) Effect of ethoxyquin on the longevity of C3H mice. Nature 229:254–255PubMedCrossRefGoogle Scholar
  5. Crowther DC, Kinghorn KJ, Miranda E, Page R, Curry JA, Duthie FA (2005) Intraneuronal abeta, non-amyloid aggregates and neurodegeneration in a Drosophila melanogaster model of Alzheimer’s disease. Neuroscience 132:123–135PubMedCrossRefGoogle Scholar
  6. Demerec M (1994) Biology of Drosophila. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  7. Gaman L, Stoian I, Atanasiu V (2011) Can ageing be slowed?: hormetic and redox perspectives. J Med Life 4(4):346–351PubMedGoogle Scholar
  8. Gutierrez E, Wiggins D, Fielding B, Gould AP (2007) Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature 445:275–280PubMedCrossRefGoogle Scholar
  9. Halliwell B, Gutteridge JM (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  10. Hibasami H, Fujikawa T, Takeda H, Nishibe S, Satoh T, Fujisawa T, Nakashima K (2000) Induction of apoptosis by Acanthopanax senticosus HARMS and its component, sesamin in human stomach cancer KATO III cells. Oncol Rep 7:1213–1216PubMedGoogle Scholar
  11. Hirose N, Doi F, Ueki T, Akazawa K, Chijiiwa K, Sugano M, Akimoto K, Shimizu S, Yamada H (1992) Suppressive effect of sesamin against 7, 12-dimethylbenz[a] anthracene induced rat mammary carcinogenesis. Anticancer Res 12:1259–1266PubMedGoogle Scholar
  12. Hou RC, Huang HM, Tzen JT, Jeng KC (2003) Protective effects of sesamin and sesamolin on hypoxic neuronal and PC12 Cells. J Neurosci Res 74:123–133PubMedCrossRefGoogle Scholar
  13. Hou RC, Wu CC, Yang CH, Jeng KC (2004) Protective effects of sesamin and sesamolin on murine BV-2 microglia cell line under hypoxia. Neurosci Lett 367:10–13PubMedCrossRefGoogle Scholar
  14. Iijima K, Liu HP, Chiang AS, Hearn SA, Konsolaki M, Zhong Y (2004) Dissecting the pathological effects of human Aβ40 and Aβ42 in Drosophila: a potential model for Alzheimer’s disease. Proc Natl Acad Sci USA 101(17):6623–6628PubMedCrossRefGoogle Scholar
  15. Jeng KCG, Hou RCW (2005) Sesamin and sesamolin: nature’s therapeutic lignans. Curr Enz Inhib 1:11–20CrossRefGoogle Scholar
  16. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512PubMedCrossRefGoogle Scholar
  17. Lin YJ, Seroude L, Benzer S (1998) Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282:943–946PubMedCrossRefGoogle Scholar
  18. Minois N (2006) How would we assess the impact of genetic changes on ageing in model species? Ageing Res Rev 5:52–59PubMedCrossRefGoogle Scholar
  19. Morgan TH (1914) No crossing over in the male of Drosophila of genes in the second and third pairs of cheomosomes. Biol Bull 26(4):195–204CrossRefGoogle Scholar
  20. Nakai M, Harada M, Nakahara K, Akimoto K, Shibata H, Miki W, Kiso Y (2003) Novel antioxidative metabolites in rat liver with ingested sesamin. J Agric Food Chem 51(6):1666–1670PubMedCrossRefGoogle Scholar
  21. Nakano D, Itoh C, Takaoka M, Kiso Y, Tanaka T, Matsumura Y (2002) Effects of sesamin on aortic oxidative stress and endothelial dysfunction in deoxycorticosterone acetate-salt hypertensive rats. Biol Pharm Bull 26(12):1701–1705CrossRefGoogle Scholar
  22. Nakano D, Kwak CJ, Fujii K, Ikemura K, Satake A, Ohkita M, Takaoka M, Ono Y, Nakai M, Tomimori N, Kiso Y, Matsumura Y (2006) Sesamin metabolites induce an endothelial nitric oxide-dependent vasorelaxation through their antioxidative property -independent mechanisms: possible involvement of the metabolites in the antihypertensive effect of sesamin. J Pharmacol Exp Ther 318(1):328–335PubMedCrossRefGoogle Scholar
  23. Noguchi T, Ikeda K, Sasaki Y, Yamamoto J, Yamori Y (2004) Effects of vitamin E and sesamin on hypertension and cerebral thrombogenesis in stroke-prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 31:S24–S26PubMedCrossRefGoogle Scholar
  24. Ouardouz M, Nikolaeva MA, Coderre E, Zamponi GW, McRory JE, Trapp BD, Yin X, Wang W, Woulfe J, Stys PK (2003) Depolarization-induced Ca2+ release in ischemic spinal cord white matter involves L-type Ca2+ channel activation of ryanodine receptors. Neuron 40(1):53–63PubMedCrossRefGoogle Scholar
  25. Owsiak A, Bartosz G, Bilinski T (2010) Oxidative stress during ageing of the yeast in a stationary culture and its attenuation by antioxidants. Cell Biol Int 34(7):731–736PubMedCrossRefGoogle Scholar
  26. Peng C, Edwin Chan HY, Huang Y, Yu HJ, Chen ZY (2011) Apple polyphenols extend the mean lifespan of Drosophila melanogaster. J Agric Food Chem 59:2097–2106PubMedCrossRefGoogle Scholar
  27. Peng C, Zuo Y, Kuan KM, Liang Y, Ma K, Edwin Chan HY, Huang Y, Yu H, Chen Z (2012) Blueberry extract prolongs lifespan of Drosophila melanogaster. Exp Gerontol 47(2):170–178PubMedCrossRefGoogle Scholar
  28. Rattan SIS (2008) Hormesis in ageing. Ageing Res Rev 7(1):63–78PubMedCrossRefGoogle Scholar
  29. Rattan SIS (2012a) Biogerontology: from here to where? The Lord Cohen Medal Lecture-2011. Biogerontology 13(1):83–91PubMedCrossRefGoogle Scholar
  30. Rattan SIS (2012b) Rationale and methods of discovering hormetins as drugs for healthy ageing. Expert Opin Drug Discov 7(5):439–448PubMedCrossRefGoogle Scholar
  31. Rattan SIS, Demirovic D (2006) Hormesis and aging. In: Mattson MP, Calabrese EJ (eds) Hormesis: a revolution in biology, toxicology and medicine. Humana, New York, p 165Google Scholar
  32. Seong KM, Kim CS, Seo SW, Jeon HY, Lee BS, Nam SY, Yang KH, Kim JY, Kim CS, Min KJ, Jin YW (2011) Genome-wide analysis of low-dose irradiated male Drosophila melanogaster with extended longevity. Biogerontology 12(2):93–107PubMedCrossRefGoogle Scholar
  33. Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42(1):28–42PubMedCrossRefGoogle Scholar
  34. Tan L, Schedl P, Song HJ, Garza D, Konsolaki M (2008) The Toll→RNFkB signaling pathway mediates the neuropathological effects of the human Alzheimer’s Ab42 polypeptide in Drosophila. PLoS One 3(12):e3966PubMedCrossRefGoogle Scholar
  35. Tonoki A, Kuranaga E, Tomioka T, Hamazaki J, Murata S, Tanaka K, Miura M (2009) Genetic evidence linking age-dependent attenuation of the 26S proteasome with the ageing process. Mol Cell Biol 29:1095–1106PubMedCrossRefGoogle Scholar
  36. Wells WW, Xu DP, Yang YF, Rocque PA (1990) Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J Biol Chem 265(26):15361–15364PubMedGoogle Scholar
  37. Yamashita K, Kawagoe Y, Nohara Y, Namiki M, Osawa T, Kawagishi S (1990) Effect of sesame in the senescence accelerated mouse. J Jpn Soc Food Sci 43:445–449CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yuanyuan Zuo
    • 1
  • Cheng Peng
    • 1
  • Yintong Liang
    • 1
  • Ka Ying Ma
    • 1
  • Ho Yin Edwin Chan
    • 1
  • Yu Huang
    • 2
  • Zhen-Yu Chen
    • 1
  1. 1.Food and Nutritional Sciences ProgrammeSchool of Life Sciences, The Chinese University of Hong KongHong KongChina
  2. 2.School of Biomedical Sciences, The Chinese University of Hong KongHong KongChina

Personalised recommendations