Biogerontology

, Volume 13, Issue 6, pp 637–646 | Cite as

Possible role of NF-κB in hormesis during ageing

Opinion

Abstract

Hormesis in ageing is probably represented by mild stress-induced stimulation of protective mechanisms in cells and organisms resulting in biologically beneficial effects. Mild stress and hormetins may act on bifurcation points in the complex network of cell signaling and transcription factors, often turning homeodynamics to health or survival. Several signaling pathways activated by diverse stimuli and by stress response converge on NF-κB activation, resulting in a regulatory system characterized by high complexity. NF-κB behaves as a chaotic oscillator and it is increasingly recognized that the number of components that impinges upon phenotypic outcomes of signal transduction pathways may be higher than those taken into consideration from canonical pathway representations. NF-κB is closely related to other important upstream signaling networks, creating chaotic oscillators with other receptor-related kinases and targeting hubs for hormesis. The great bulk of natural hormetins acts on these signaling pathways, while NF-κB appears as a key regulatory factor in this context. Due to its tight relationship with main signaling system NF-κB plays a fundamental role in stress response, apoptosis and autophagy and appears to be a possible target for hormesis in ageing.

Keywords

Aging NF-κB Hormesis Mitohormesis Stressors Lifespan 

References

  1. Abel DL (2009) The capabilities of chaos and complexity. Int J Mol Sci 10(1):247–291PubMedCrossRefGoogle Scholar
  2. Aon MA, Cortassa S, O’Rourke B (2006) The fundamental organization of cardiac mitochondria as a network of coupled oscillators. Biophys J 91(11):4317–4327PubMedCrossRefGoogle Scholar
  3. Blagosklonny MV (2011) Hormesis does not make sense except in the light of TOR-driven ageing. Ageing (Albany NY) 3(11):1051–1062Google Scholar
  4. Bouitbir J, Charles AL, Echaniz-Laguna A, Kindo M, Daussin F, Auwerx J, Piquard F, Geny B, Zoll J (2011) Opposite effects of statins on mitochondria of cardiac and skeletal muscles: a ‘mitohormesis’ mechanism involving reactive oxygen species and PGC-1. Eur Heart J. doi:10.1093/eurheartj/ehr224 PubMedGoogle Scholar
  5. Calabrese EJ (2012) Hormesis: toxicological foundations and role in aging research. Exp Gerontol. doi:10.1016/j.exger.2012.02.004
  6. Calabrese V, Cornelius C, Cuzzocrea S, Iavicoli I, Rizzarelli E, Calabrese EJ (2011) Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol Aspects Med 32(4–6):279–304PubMedCrossRefGoogle Scholar
  7. Calabrese V, Cornelius C, Dinkova-Kostova AT, Iavicoli I, Di Paola R, Koverech A, Cuzzocrea S, Rizzarelli E, Calabrese EJ (2012) Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta 1822(5):753–783PubMedCrossRefGoogle Scholar
  8. Carnes BA (2011) What is lifespan regulation and why does it exist? Biogerontology 12(4):367–374PubMedCrossRefGoogle Scholar
  9. Cartier J, Marivin A, Berthelet J, Dubrez L (2012) IAPs: a central element in the NF-κB activating signaling pathway. Med Sci (Paris) 28(1):69–75CrossRefGoogle Scholar
  10. Chickarmane V, Paladugu SR, Bergmann F, Sauro HM (2005) Bifurcation discovery tool. Bioinform Appl Tool 21(18):3688–3690Google Scholar
  11. Chirumbolo S (2010) The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflamm Allergy Drug Targets 9(4):263–285PubMedCrossRefGoogle Scholar
  12. Chirumbolo S (2011) Hormesis, resveratrol and plant-derived polyphenols: some comments. Hum Exp Toxicol 30(12):2027–2030PubMedCrossRefGoogle Scholar
  13. Cogswell PC, Kashatus DF, Keifer JA, Guttridge DC, Reuther JY, Bristow C, Roy S, Nicholson DW, Baldwin AS Jr (2003) NF-kappa B and I kappa B alpha are found in the mitochondria. Evidence for regulation of mitochondrial gene expression by NF-kappa B. J Biol Chem 278(5):2963–2968PubMedCrossRefGoogle Scholar
  14. Demirovic D, Rattan SIS (2012) Establishing cellular stress response profiles as biomarkers of homeodynamics, health and hormesis. Exp Gerontol. doi:10.1016/j.exger.2012.02.005 PubMedGoogle Scholar
  15. Djavaheri-Mergny M, Amelotti M, Mathieu J, Besançon F, Bauvy C, Codogno P (2007) Regulation of autophagy by NFkappaB transcription factor and reactives oxygen species. Autophagy 3(4):390–392PubMedGoogle Scholar
  16. Dufour E, Larsson NG (2004) Understanding aging: revealing order out of chaos. Biochim Biophys Acta 1658(1–2):122–132PubMedGoogle Scholar
  17. Emlen JM, Freeman DC, Mills A, Graham JH (1998) How organisms do the right thing: the attractor hypothesis. Chaos 8(3):717–726PubMedCrossRefGoogle Scholar
  18. Franceschi C, Valesin S, Bonafe M, Paolisso G, Yashin AI, Monti D, De Benedictis G (2000) The network and the remodeling theories of ageing: historical background and new perspectives. Exp Gerontol 35:879–896PubMedCrossRefGoogle Scholar
  19. Garrabou G, Morén C, López S, Tobías E, Cardellach F, Miró O, Casademont J (2012) The effects of sepsis on mitochondria. J Infect Dis 205(3):392–400PubMedCrossRefGoogle Scholar
  20. Han K, Kwon HW, Kang H, Kim J, Lee MS, Choi MY (2011) Dynamics of macroautophagy: modeling and oscillatory behavior. Phys A 391(3):686–692Google Scholar
  21. Harvey E, Kirk V, Osinga HM, Sneyd J, Wechselberger M (2010) Understanding anomalous delays in a model of intracellular calcium dynamics. Chaos 20(4):045104PubMedCrossRefGoogle Scholar
  22. Irrcher I, Ljubicic V, Hood DA (2009) Interactions between ROS and AMP kinase activity in the regulation of PGC-1alpha transcription in skeletal muscle cells. Am J Physiol Cell Physiol 296(1):C116–C123PubMedCrossRefGoogle Scholar
  23. Izzi V, Masuelli L, Tresoldi I, Sacchetti P, Modesti A, Galvano F, Bei R (2012) The effects of dietary flavonoids on the regulation of redox inflammatory networks. Front Biosci 17:2396–2418PubMedCrossRefGoogle Scholar
  24. Janus P, Pakuła-Cis M, Kalinowska-Herok M, Kashchak N, Szołtysek K, Pigłowski W, Widlak W, Kimmel M, Widlak P (2011) NF-κB signaling pathway is inhibited by heat shock independently of active transcription factor HSF1 and increased levels of inducible heat shock proteins. Genes Cells 16(12):1168–1175PubMedCrossRefGoogle Scholar
  25. Jensen MH, Krishna S (2012) Inducing phase-locking and chaos in cellular oscillators by modulating the driving stimuli. FEBS Lett 586(11):1664–1668PubMedCrossRefGoogle Scholar
  26. Jia Z, Bien H, Entcheva E (2010) Detecting space-time alternating biological signalsclose to the bifurcation point. IEEE Trans Biomed Eng 57(2):316–324PubMedCrossRefGoogle Scholar
  27. Kim G, Meriin AB, Gabai VL, Christians E, Benjamin I, Wilson A, Wolozin B, Sherman MY (2012) The heat shock transcription factor Hsf1 is downregulated in DNA damage-associated senescence, contributing to the maintenance of senescence phenotype. Aging Cell 11(4):617–627PubMedCrossRefGoogle Scholar
  28. Kraft DC, Deocaris CC, Rattan SI (2006) Proteasomal oscillation during mild heat shock in aging human skin fibroblasts. Ann NY Acad Sci 1067:224–227PubMedCrossRefGoogle Scholar
  29. Krut’ko VN, Dontsov VI, Zakhar’iashcheva OV (2009) The system theory of aging: methodological principles, basic tenets and applications. Aviakosm Ekolog Med 43(1):12–19PubMedGoogle Scholar
  30. Kyriazis M (2010) Nonlinear stimulation and hormesis in human aging: practical examples and action mechanisms. Rejuvenation Res 13(4):445–452PubMedCrossRefGoogle Scholar
  31. Le Bourg E, Rattan SI (2006) Can dietary restriction increase longevity in all species, particularly in human beings? Introduction to a debate among experts. Biogerontology 7(3):123–125Google Scholar
  32. Le Bourg E, Rattan SI (2008) Mild stress and healthy aging. In: Mattson M, Calabrese EJ (eds) Hormesis: a revolution in biology. Humana Press, BaltimoreGoogle Scholar
  33. Le Bourg E, Rattan SI (2009) Is hormesis applicable as a pro-healthy aging intervention in mammals and human beings, and how? Introduction to a special issue of Dose-Response. Dose Response 8(1):1–3PubMedCrossRefGoogle Scholar
  34. Lee Y, Lee HY, Gustafsson AB (2012) Regulation of autophagy by metabolic and stress signaling pathways in the heart. J Cardiovasc Pharmacol 60(2):118–124Google Scholar
  35. Liao JK (2012) Mitohormesis: another pleiotropic effect of statins? Eur Heart J 33(11):1299–1301Google Scholar
  36. Malhotra V, Wong HR (2002) Interactions between the heat shock response and the nuclear factor-kappa B signaling pathway. Crit Care Med 30(1 Suppl):S89–S95CrossRefGoogle Scholar
  37. Marhl M, Haberichter T, Brumen M, Heinrich R (2000) Complex calcium oscillations and the role of mitochondria and cytosolic proteins. Biosystems 57(2):75–86PubMedCrossRefGoogle Scholar
  38. Marini AM, Jiang H, Pan H, Wu X, Lipsky RH (2008) Hormesis: a promising strategy to sustain endogenous neuronal survival pathways against neurodegenerative disorders. Ageing Res Rev 7(1):21–33PubMedCrossRefGoogle Scholar
  39. Mauro C, Leow SC, Anso E, Rocha S, Thotakura AK, Tornatore L, Moretti M, De Smaele E, Beg AA, Tergaonkar V, Chandel NS, Franzoso G (2011) NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat Cell Biol 13(10):1272–1279PubMedCrossRefGoogle Scholar
  40. McDonald D, Waterbury L, Knight R, Betterton MD (2008) Activating and inhibiting connections in biological network dynamics. Biol Direct 3:49PubMedCrossRefGoogle Scholar
  41. Moskalev A, Shaposhnikov M, Turysheva E (2009) Life span alteration after irradiation in Drosophila melanogaster strains with mutations of Hsf and Hsps. Biogerontology 10(1):3–11PubMedCrossRefGoogle Scholar
  42. Novák B, Tyson JJ (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9(12):981–991PubMedCrossRefGoogle Scholar
  43. Olesen J, Kiilerich K, Pilegaard H (2010) PGC-1alpha-mediated adaptations in skeletal muscle. Pflugers Arch 460(1):153–162PubMedCrossRefGoogle Scholar
  44. Paliwal S, Wang CJ, Levchenko A (2008) Pulsing cells: how fast is too fast? HFSP J 2(5):251–256PubMedCrossRefGoogle Scholar
  45. Pan Y (2011) Mitochondria, reactive oxygen species, and chronological ageing: a message from yeast. Exp Gerontol 46(11):847–852PubMedCrossRefGoogle Scholar
  46. Paszek P, Jackson DA, White MR (2010) Oscillatory control of signalling molecules. Curr Opin Genet Dev 20(6):670–676PubMedCrossRefGoogle Scholar
  47. Pfeuty B, David-Pfeuty T, Kaneko K (2008) Underlying principles of cell fate determination during G1 phase of the mammalian cell cycle. Cell Cycle 7(20):3246–3257PubMedCrossRefGoogle Scholar
  48. Randić M, Estrada E (2005) Order from chaos: observing hormesis at the proteome level. J Proteome Res 4(6):2133–2136PubMedCrossRefGoogle Scholar
  49. Rattan SIS (2006) Theories of biological ageing: genes, proteins, and free radicals. Free Radic Res 40(12):1230–1238. doi:10.1080/10715760600911303 PubMedCrossRefGoogle Scholar
  50. Rattan SI (2008) Hormesis in ageing. Ageing Res Rev 7(1):63–78PubMedCrossRefGoogle Scholar
  51. Rattan SI (2012a) Biogerontology: from here to where? The Lord Cohen Medal Lecture-2011. Biogerontology 13(1):83–91PubMedCrossRefGoogle Scholar
  52. Rattan SI (2012b) Rationale and methods of discovering hormetins as drugs for healthy ageing. Expert Opin Drug Discov 7(5):439–448PubMedCrossRefGoogle Scholar
  53. Rattan SI, Fernandes RA, Demirovic D, Dymek B, Lima CF (2009) Heat stress and hormetin-induced hormesis in human cells: effects on ageing, wound healing, angiogenesis, and differentiation. Dose Response 7(1):90–103PubMedCrossRefGoogle Scholar
  54. Rossolini G, Piantanelli L (2001) Mathematical modeling of the aging processes and the mechanisms of mortality: paramount role of heterogeneity. Exp Gerontol 36(8):1277–1288PubMedCrossRefGoogle Scholar
  55. Rué P, Pons AJ, Domedel-Puig N, García-Ojalvo J (2010) Relaxation dynamics and frequency response of a noisy cell signaling network. Chaos 20(4):045110PubMedCrossRefGoogle Scholar
  56. Salminen A, Kaarniranta K (2009) Regulation of the aging process by autophagy. Trends Mol Med 15(5):217–224PubMedCrossRefGoogle Scholar
  57. Salminen A, Kauppinen A, Kaarniranta K (2012) Phytochemicals suppress nuclear factor-κB signaling: impact on health span and the aging process. Curr Opin Clin Nutr Metab Care 15(1):23–28PubMedCrossRefGoogle Scholar
  58. Sano M, Fukuda K (2008) Activation of mitochondrial biogenesis by hormesis. Circ Res 103(11):1191–1193PubMedCrossRefGoogle Scholar
  59. Sedivy R (1996) The potential role of apoptosis (programmed cell death) in a chaotic determined carcinogenesis. Med Hypotheses 46(5):455–457PubMedCrossRefGoogle Scholar
  60. Snigdha S, Smith ED, Prieto GA, Cotman CW (2012) Caspase-3 activation as a bifurcation point between plasticity and cell death. Neurosci Bull 28(1):14–24PubMedCrossRefGoogle Scholar
  61. Sommermann TG, Mack HI, Cahir-McFarland E (2012) Autophagy prolongs survival after NFκB inhibition in B-cell lymphomas. Autophagy 8(2):265–267PubMedCrossRefGoogle Scholar
  62. Stark M (2008) Hormesis, adaptation, and the sandpile model. Crit Rev Toxicol 38(7):641–644PubMedCrossRefGoogle Scholar
  63. Stark M (2012) The sandpile model: optimal stress and hormesis. Dose Response 10(1):66–74PubMedCrossRefGoogle Scholar
  64. Szumiel I (2012) Radiation hormesis: autophagy and other cellular mechanisms. Int J Radiat Biol 88(9):619–628Google Scholar
  65. Tieri P, Termanini A, Bellavista E, Salvioli S, Capri M, Franceschi C (2012) Charting the NF-κB pathway interactome map. PLoS One 7(3):e32678PubMedCrossRefGoogle Scholar
  66. Varela M, Ruiz-Esteban R, Mestre de Juan MJ (2010) Chaos, fractals, and our concept of disease. Perspect Biol Med 53(4):584–595PubMedCrossRefGoogle Scholar
  67. Vaughan S, Jat PS (2011) Deciphering the role of nuclear factor-κB in cellular senescence. Aging (Albany NY) 3(10):913–919Google Scholar
  68. Verbeke P, Clark BFC, Rattan SIS (2000) Modulating cellular aging in vitro: hormetic effects of repeated mild heat stress on protein oxidation and glycation. Exp Gerontol 35:787–794PubMedCrossRefGoogle Scholar
  69. Wang G (2010) Singularity analysis of the AKT signaling pathway reveals connections between cancer and metabolic diseases. Phys Biol 7(4):046015PubMedCrossRefGoogle Scholar
  70. Wang Y, Paszek P, Horton CA, Kell DB, White MR, Broomhead DS, Muldoon MR (2011) Interactions among oscillatory pathways in NF-kappa B signaling. BMC Syst Biol 5:23PubMedCrossRefGoogle Scholar
  71. Wee KB, Yio WK, Surana U, Chiam KH (2012) Transcription factor oscillations induce differential gene expressions. Biophys J 102(11):2413–2423PubMedCrossRefGoogle Scholar
  72. Wong HR (1998) Potential protective role of the heat shock response in sepsis. New Horiz 6(2):194–200PubMedGoogle Scholar
  73. Xiao G (2007) Autophagy and NF-kappaB: fight for fate. Cytokine Growth Factor Rev 18(3–4):233–243PubMedCrossRefGoogle Scholar
  74. Zou Y, Li J, Ma H, Jiang H, Yuan J, Gong H, Liang Y, Guan A, Wu J, Li L, Zhou N, Niu Y, Sun A, Nakai A, Wang P, Takano H, Komuro I, Ge J (2011) Heat shock transcription factor 1 protects heart after pressure overload through promoting myocardial angiogenesis in male mice. J Mol Cell Cardiol 51(5):821–829PubMedCrossRefGoogle Scholar
  75. Zumsande M, Gross T (2010) Bifurcations and chaos in the MAPK signaling cascade. J Theor Biol 265(3):481–491PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Medicine-Unit of GeriatryUniversity of VeronaVeronaItaly

Personalised recommendations