Biogerontology

, Volume 13, Issue 3, pp 215–235 | Cite as

Hormesis: why it is important to biogerontologists

  • Edward J. Calabrese
  • Ivo Iavicoli
  • Vittorio Calabrese
Review Article

Abstract

This paper offers a broad assessment of the hormetic dose response and its relevance to biogerontology. The paper provides detailed background information on the historical foundations of hormesis, its quantitative features, mechanistic foundations, as well as how the hormesis concept could be further applied in the development of new therapeutic advances in the treatment of age-related diseases. The concept of hormesis has direct application to biogerontology not only affecting the quality of the aging process but also experimental attempts to extend longevity.

Keywords

Hormesis Hormetin Biphasic U-shaped J-shaped Adaptive response 

Notes

Acknowlegements

Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA9550-07-1-0248. The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsement, either expressed or implied, of the Air Force Office of Scientific Research or the U.S. Government. The sponsors had no role in study design, collection, analysis and interpretation of data, writing of the report and decision to submit the manuscript for publication.

References

  1. Abete P, Ferrara N, Cacciatore F, Sagnelli E, Manzi M, Carnovale V, Calabrese C, de Santis D, Testa G, Longobardi G, Napoli C, Rengo F (2001) High level of physical activity preserves the cardioprotective effect of preinfarction angina in elderly patients. J Am Coll Cardiol 38:1357–1365PubMedCrossRefGoogle Scholar
  2. Abete P, Testa G, Galizia G, Mazzella F, Della Morte D, de Santis D, Calabrese C, Cacciatore F, Gargiulo G, Ferrara N, Rengo G, Sica V, Napoli C, Rengo F (2005) Tandem action of exercise training and food restriction completely preserves ischemic preconditioning in the aging heart. Exp Gerontol 40:43–50PubMedCrossRefGoogle Scholar
  3. Abete P, Caciatore F, Testa G, Della-Morte D, Galizia G, Ferrar N, Rengo F (2010) Clinical application of ischemic preconditioning in the elderly. Dose Response 8:34–40CrossRefGoogle Scholar
  4. Altschul R (1954) Endothelium, its development, morphology, function, and pathology. MacMillan, New YorkGoogle Scholar
  5. Anisimov VN, Zabezhinski MA, Popovich IG, Piskunova TS, Semenchenko AV, Tyndyk ML, Yurova MN, Antoch MP, Blagosklonny MV (2010) Rapamycin extends maximal lifespan in cancer-prone mice. Am J Pathol 176:2092–2097PubMedCrossRefGoogle Scholar
  6. Arevalo MA, Roldan PM, Chacon PJ, Rodriguez-Tebar A (2009) Amyloid β serves as an NGF-like neurotrophic factor or acts as a NGF antagonist depending on its concentration. J Neurochem 111:1425–1433PubMedCrossRefGoogle Scholar
  7. Arvanov VL, Lian X, Magro P, Roberts R, Wang RY (1999) A pre- and postsynaptic modulatory action of 5-HT and the 5-HT2A,2C receptor agonist DOB on NMDA-evoked responses in the rat medial prefrontal cortex. Eur J Neurosci 11:2917–2934PubMedCrossRefGoogle Scholar
  8. Baliunas DO, Taylor BJ, Irving H, Roerecke M, Patra J, Mohapatra S, Rehm J (2009) Alcohol as a risk factor for type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 32(11):2123–2132PubMedCrossRefGoogle Scholar
  9. Beck B, Calabrese EJ, Slayton TM, Rudel T (2007) The use of toxicology in the regulatory process. In: Hayes AW (ed) Principles and methods of toxicology, 5th edn. Taylor and Francis, Philadelphia, pp 45–102Google Scholar
  10. Belz RG, Cedergreen N (2010) Parthenin hormesis in plants depends on growth conditions. Environ Exp Bot 69:293–301CrossRefGoogle Scholar
  11. Bierkens J, Maes J, Plaetse FV (1998) Dose-dependent induction of heat shock protein 70 synthesis in Raphidocelis subcapitata following exposure to different classes of environmental pollutants. Environ Poll 101:91–97CrossRefGoogle Scholar
  12. Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A (2010) Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 11:35–46PubMedCrossRefGoogle Scholar
  13. Blagosklonny MV (2010) Calorie restriction: decelerating mTOR-driven aging from cells to organisms (including humans). Cell Cycle 9:683–688PubMedCrossRefGoogle Scholar
  14. Blagosklonny MV (2011) Hormesis does not make sense except in the light of TOR-driven aging. Aging 3(11):1051–1062PubMedGoogle Scholar
  15. Blake MJ, Fargnoli J, Gershon D, Holbrook NJ (1991) Concomitant decline in heat-induced hyperthermia and HSP70 mRNA expression in aged rats. Am J Physiol 260(4):R663–R667PubMedGoogle Scholar
  16. Bloedau CV (1884) General medical central 93:1362 (Cited in Schulz, 1885)Google Scholar
  17. Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G, Schulz R (2008) Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Ciruc Res 102(1):131–135Google Scholar
  18. Boengler K, Schulz R, Heusch G (2009) Loss of cardioprotection with ageing. Cardiovasc Res 83:247–261PubMedCrossRefGoogle Scholar
  19. Bohme H (1986) Hugo Schulz (8/6/1853–7/13/1932). His life and work. Dissertation, Freien University of BerlinGoogle Scholar
  20. Branham SE (1929) The effects of certain chemical compounds upon the course of gas production by baker’s yeast. J Bacteriol 18:247–264PubMedGoogle Scholar
  21. Broadhurst PL (1957) Emotionality and the Yerkes–Dodson law. J Exp Psychol 54:345–352PubMedCrossRefGoogle Scholar
  22. Burton V, Mitchell HK, Young P, Petersen NS (1988) Heat shock protection against cold stress of Drosophila melanogaster. Mol Cell Biol 8:3550–3552PubMedGoogle Scholar
  23. Calabrese EJ (1999) Evidence that hormesis represents an ‘‘overcompensation’’ response to a disruption in homeostasis. Ecotoxicol Environ Saf 42:135–137CrossRefGoogle Scholar
  24. Calabrese EJ (2001a) Overcompensation stimulation: a mechanism for hormetic effects. Crit Rev Toxicol 31:425–470PubMedCrossRefGoogle Scholar
  25. Calabrese EJ (2001b) Prostaglandins: biphasic dose responses. Crit Rev Toxicol 31:475–487PubMedCrossRefGoogle Scholar
  26. Calabrese EJ (2001c) Estrogen and related compounds: biphasic dose responses. Crit Rev Toxicol 31:503–515PubMedCrossRefGoogle Scholar
  27. Calabrese EJ (2001d) Androgens: biphasic dose responses. Crit Rev Toxicol 31:517–522PubMedCrossRefGoogle Scholar
  28. Calabrese EJ (2001e) Adrenergic receptors: biphasic dose responses. Crit Rev Toxicol 31:523–538PubMedCrossRefGoogle Scholar
  29. Calabrese EJ (2001f) Adenosine: biphasic dose responses. Crit Rev Toxicol 31:539–551PubMedCrossRefGoogle Scholar
  30. Calabrese EJ (2001g) 5-hydroxytryptamine (serotonin): biphasic dose responses. Crit Rev Toxicol 31:553–561PubMedCrossRefGoogle Scholar
  31. Calabrese EJ (2001h) Dopamine: biphasic dose response. Crit Rev Toxicol 31:563–583PubMedCrossRefGoogle Scholar
  32. Calabrese EJ (2001i) Opiates: biphasic dose response. Crit Rev Toxicol 31:585–604PubMedCrossRefGoogle Scholar
  33. Calabrese EJ (2005a) Factors affecting the historical rejection of hormesis as a fundamental dose–response model in toxicology and the broader biomedical sciences. Toxicol Appl Pharmacol 206:365–366Google Scholar
  34. Calabrese EJ (2005b) Paradigm lost, paradigm found: the reemergence of hormesis as a fundamental dose–response model in the toxicological sciences. Environ Pollut 138:378–411CrossRefGoogle Scholar
  35. Calabrese EJ (2005c) Cancer biology and hormesis: human tumor cell lines commonly display hormetic (biphasic) dose responses. Crit Rev Toxicol 35:463–582PubMedCrossRefGoogle Scholar
  36. Calabrese EJ (2005d) Hormetic dose–response relationships in immunology: occurrence, quantitative features of the dose response, mechanistic foundations, and clinical implications. Crit Rev Toxicol 35:89–295PubMedCrossRefGoogle Scholar
  37. Calabrese EJ (2007) Converging concepts: Adaptive response, preconditioning, and the Yerkes–Dodson law are manifestations of hormesis. Aging Res Rev 7:8–20CrossRefGoogle Scholar
  38. Calabrese EJ (2008a) Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27:1451–1474PubMedCrossRefGoogle Scholar
  39. Calabrese EJ (2008b) Stress biology and hormesis: the Yerkes–Dodson law in psychology—a special case of the hormesis dose response. Crit Rev Toxicol 38:453–462PubMedCrossRefGoogle Scholar
  40. Calabrese EJ (2008c) An assessment of anxiolytic drug screening tests: hormetic dose responses predominate. Crit Rev Toxicol 38:489–542PubMedCrossRefGoogle Scholar
  41. Calabrese EJ (2008d) Modulation of the epileptic seizure threshold: implications of biphasic dose responses. Crit Rev Toxicol 38:543–556PubMedCrossRefGoogle Scholar
  42. Calabrese EJ (2008e) Hormesis: principles and applications for pharmacology and toxicology. Am J Pharmacol Toxicol 3:59–71CrossRefGoogle Scholar
  43. Calabrese EJ (2008f) What is hormesis? In: Le Bourg E, Rattan SIS (eds) Mild stress and healthy aging: applying hormesis in aging research and interventions. Springer, New York, pp 5–19Google Scholar
  44. Calabrese EJ (2008g) Alzheimer’s disease drugs: an application of the hormetic dose-response model. Crit Rev Toxicol 38:419–452PubMedCrossRefGoogle Scholar
  45. Calabrese EJ (2008h) Pharmacological enhancement of neuronal survival. Crit Rev Toxicol 38:349–390PubMedCrossRefGoogle Scholar
  46. Calabrese EJ (2008i) Hormesis and medicine. Br J Clin Pharmacol 66:594–617PubMedGoogle Scholar
  47. Calabrese EJ (2008j) Neuroscience and hormesis. Overview and general findings. Crit Rev Toxicol 38:249–252PubMedCrossRefGoogle Scholar
  48. Calabrese EJ (2008k) Dose-response features of neuroprotective agents: an integrative summary. Crit Rev Toxicol 38:253–348PubMedCrossRefGoogle Scholar
  49. Calabrese EJ (2009) Hormesis as a basic concept. In: Bachmann K, Hacker M, Messer W (eds) Pharmacology—principles and practice, Chapter 5. Elsevier Publishers, Amsterdam, pp 75–102Google Scholar
  50. Calabrese EJ (2011) Toxicology rewrites its history and rethinks its future: giving equal focus to both harmful and beneficial effects. Environ Toxicol Chem 30:1658–1673CrossRefGoogle Scholar
  51. Calabrese EJ, Baldwin LA (2000) Chemical hormesis: its historical foundations as a biological hypothesis. Hum Exp Toxicol 19:2–31PubMedCrossRefGoogle Scholar
  52. Calabrese EJ, Baldwin LA (2001a) Agonist concentration gradients as a generalizable regulatory implementation strategy. Crit Rev Toxicol 31:471–473PubMedCrossRefGoogle Scholar
  53. Calabrese EJ, Baldwin LA (2001b) Adenosine: biphasic dose responses. Crit Rev Toxicol 31:539–552PubMedCrossRefGoogle Scholar
  54. Calabrese EJ, Baldwin LA (2001c) Adrenergic receptors: biphasic dose response. Crit Rev Toxicol 31:523–538PubMedCrossRefGoogle Scholar
  55. Calabrese EJ, Baldwin LA (2001d) Dopamine: biphasic dose response. Crit Rev Toxicol 31:563–584PubMedCrossRefGoogle Scholar
  56. Calabrese EJ, Baldwin LA (2001e) Estrogen and related compounds: biphasic dose responses. Crit Rev Toxicol 31:503–516PubMedCrossRefGoogle Scholar
  57. Calabrese EJ, Baldwin LA (2001f) 5-Hydroxytryptamine (serotonin): biphasic dose responses. Crit Rev Toxicol 31:553–562PubMedCrossRefGoogle Scholar
  58. Calabrese EJ, Baldwin LA (2001g) Opiates: biphasic dose responses. Crit Rev Toxicol 31:585–604PubMedCrossRefGoogle Scholar
  59. Calabrese EJ, Baldwin LA (2001h) Nitric oxide: biphasic dose response. Crit Rev Toxicol 31:489–502PubMedCrossRefGoogle Scholar
  60. Calabrese EJ, Baldwin LA (2001i) Androgens: biphasic dose response. Crit Rev Toxicol 31:517–522PubMedCrossRefGoogle Scholar
  61. Calabrese EJ, Baldwin LA (2001j) Prostaglandins: biphasic dose response. Crit Rev Toxicol 31:475–488PubMedCrossRefGoogle Scholar
  62. Calabrese EJ, Baldwin LA (2002a) Defining hormesis. Hum Exp Toxicol 21:91–97PubMedCrossRefGoogle Scholar
  63. Calabrese EJ, Baldwin LA (2002b) Hormesis and high risk groups. Regul Toxicol Pharmacol 35:414–428PubMedCrossRefGoogle Scholar
  64. Calabrese EJ, Baldwin LA (2003a) Toxicology rethinks its central belief. Nature 421:691–692PubMedCrossRefGoogle Scholar
  65. Calabrese EJ, Baldwin LA (2003b) Peptides and hormesis. Crit Rev Toxicol 33(3–4):355–405PubMedCrossRefGoogle Scholar
  66. Calabrese EJ, Blain R (2005) The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview. Toxicol Appl Pharmacol 202:289–301PubMedCrossRefGoogle Scholar
  67. Calabrese EJ, Blain R (2009) Hormesis and plant biology. Environ Pollut 157:42–48PubMedCrossRefGoogle Scholar
  68. Calabrese EJ, Blain R (2011) The hormesis database: the occurrence of hormetic dose response in the toxicological literature. Regul Toxicol Pharmacol 61:73–81PubMedCrossRefGoogle Scholar
  69. Calabrese EJ, Jonas WB (2010a) Homeopathy: clarifying its relationship to hormesis. Hum Exp Toxicol 29:531–536PubMedCrossRefGoogle Scholar
  70. Calabrese EJ, Jonas WB (2010b) Evaluating homeopathic drugs within a biomedical framework. Hum Exp Toxicol 29:545–549PubMedCrossRefGoogle Scholar
  71. Calabrese EJ, Mattson MP (2011) Hormesis provides a generalized quantitative estimate of biological plasticity. J Cell Commun Signal 5:25–38PubMedCrossRefGoogle Scholar
  72. Calabrese EJ, Staudenmayer JW, Stanek EJ (2006a) Drug development and hormesis: changing conceptual understanding of the dose response creates new challenges and opportunities for more effective drugs. Curr Opin Drug Discov Devel 9:117–123PubMedGoogle Scholar
  73. Calabrese EJ, Staudenmayer JW, Stanek EJ, Hoffmann GR (2006b) Hormesis outperforms threshold model in NCI antitumor drug screening data. Toxicol Sci 94:368–378PubMedCrossRefGoogle Scholar
  74. Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L, Cedergreen N, Cherian MG, Chiueh CC, Clarkson TW, Cook RR, Diamond DM, Doolittle DJ, Dorato MA, Duke SO, Feinendegen L, Gardner DE, Hart RW, Hastings KL, Hayes AW, Hoffmann GR, Ives JA, Jaworowski Z, Johnson TE, Jonas WB, Kaminski NE, Keller JG, Klaunig JE, Knudsen TB, Kozumbo WJ, Lettieri T, Liu SZ, Maisseu A, Maynard KI, Masoro EJ, McClellan RO, Mehendale HM, Mothersill C, Newlin DB, Nigg HN, Oehme FW, Phalen RF, Philbert MA, Rattan SIS, Riviere JE, Rodricks J, Sapolsky RM, Scott BR, Seymour C, Sinclair DA, Smith-Sonneborn J, Snow ET, Spear L, Stevenson DE, Thomas Y, Tubiana M, Williams GM, Mattson MP (2007) Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework. Toxicol Appl Pharmacol 222:122–128PubMedCrossRefGoogle Scholar
  75. Calabrese EJ, Stanek EJ, Nascarella M, Hoffmann G (2008) Hormesis predicts low-dose responses better than threshold models. Int J Toxicol 27:369–378PubMedCrossRefGoogle Scholar
  76. Calabrese EJ, Mattson MP, Calabrese V (2010) Resveratrol commonly displays hormesis: occurrence and biomedical significance. Hum Exp Toxicol 29:980–1015PubMedCrossRefGoogle Scholar
  77. Cork JM (1957) Gamma radiation and longevity of the flour beetle. Radiat Res 7:551–557PubMedCrossRefGoogle Scholar
  78. Coulson EJ (2006) Does the p75 neurotrophin receptor mediate a beta-induced toxicity in Alzheimer’s disease? J Neurochem 98:654–660PubMedCrossRefGoogle Scholar
  79. Criollo A, Senovilla L, Authier H, Maiuri MC, Morselli E, Vitale I, Kepp O, Tasdemir E, Galluzzi L, Shen S, Tailler M, Delahaye N, Tesniere A, De Stefano D, Ben Younes A, Harper F, Pierron G, Lavandero S, Zitvogel L, Israel A, Baud V, Kroemer G (2010) The IKK complex contributes to the induction of autophagy. EMBO J 29:619–631PubMedCrossRefGoogle Scholar
  80. Crump T (2003) Contemporary medicine as presented by its practitioners themselves, Leipzig, 1923:217–250, Hugo Schulz. NIH Library Translation (NIH-98-134). Nonlinearity Biol Toxicol Med 1:295–318PubMedCrossRefGoogle Scholar
  81. Dambraust T, Cornish HH (1970) Effect of pretreatment of rats with carbon tetrachloride on tolerance development. Toxicol Appl Pharmacol 17:83CrossRefGoogle Scholar
  82. Davey WP (1917) The effect of X-rays on the length of life of Tribolium confusum. J Exp Zool 22(3):573–592CrossRefGoogle Scholar
  83. Davey WP (1919) Prolongation of life of Tribolium confusum apparently due to small doses of X-rays. J Exp Zool 28(3):447–458CrossRefGoogle Scholar
  84. Demidenko ZN, Korotchkina LG, Gudkov AV, Blagosklonny MV (2010) Paradoxical suppression of cellular senescence by p53. Proc Natl Acad Sci USA 107:9660–9664PubMedCrossRefGoogle Scholar
  85. Demidova-Rice TN, Salomatina EV, Yaroslavsky AN, Herman IM, Hamblin MR (2007) Low-level light stimulates excisional wound healing in mice. Lasers Surg Med 39:706–715PubMedCrossRefGoogle Scholar
  86. Djousse L, Lee IM, Buring JE, Gaziano JM (2009) Alcohol consumption and risk of cardiovascular disease and death in women: potential mediating mechanisms. Circulation 120(3):237–244PubMedCrossRefGoogle Scholar
  87. Eaton DL, Klaassen CD (2003) Principles of toxicology. In: Klaassen CD, Watkins JB III (eds) Cassarett and Doull’s essentials of toxicology. McGraw-Hill, New York, pp 6–20Google Scholar
  88. Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Camona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Frohlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11(11):1305–1314PubMedCrossRefGoogle Scholar
  89. Elliott K (2011) Is a little pollution good for you? Incorporating societal values in environmental research. Oxford University Press, New York, p 264CrossRefGoogle Scholar
  90. Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Phil Transact Roy Soc Edin 52:399–433Google Scholar
  91. Fosslien E (2009) The hormetic morphogen theory of curvature and the morphogenesis and pathology of tubular and other curve structures. Dose Response 7:307–331PubMedCrossRefGoogle Scholar
  92. Gaia G, Comini L, Pasini E, Tomelleri G, Agnoletti L, Ferrari R (1995) Heat shock protein 72 in cardiac and skeletal muscles during hypertension. Mol Cell Biochem 146:1–6PubMedCrossRefGoogle Scholar
  93. Garant DS, Xu SF, Sperber EF, Moshe SL (1995) Age-related differences in the effects of GABAA agonists microinjected into rat substantia nigra: pro- and anticonvulsant actions. Epilepsia 36:960–965PubMedCrossRefGoogle Scholar
  94. Giuliani N, Pedrazzoni M, Negri G, Passeri G, Impicciatore M, Girasole G (1998) Bisphosphonates stimulate formation of osteoblast precursors and mineralized nodules in murine and human bone marrow cultures in vitro and promote early osteoblastogenesis in young and aged mice in vivo. Bone 22:55–461CrossRefGoogle Scholar
  95. Glende EA (1972) Carbon tetrachloride-induced protection against carbon-tetrachloride toxicity—role of liver microsomal drug-metabolizing system. Biochem Pharmacol 21:1697PubMedCrossRefGoogle Scholar
  96. Goude D, Fagerberg B, Hulthe J, AIR Study Group (2002) Alcohol consumption, the metabolic syndrome and insulin resistance in 58-year-old clinically healthy men (AIR study). Clin Sci (Lond) 102(3):345–352CrossRefGoogle Scholar
  97. Hallengren B, Forsgren A (1978) Effect of alcohol on chemotaxis, adherence and phagocytosis of human polymorphonuclear leucocytes. Acta Med Scand 204:43–48PubMedCrossRefGoogle Scholar
  98. Hashimoto Y, Kaneko Y, Tsukamoto E, Frankowski H, Kouyama K, Kita Y, Niikura T, Aiso S, Bredesen DE, Matsuoka M, Nishimoto I (2004) Molecular characterization of neurohybrid cell death induced by Alzheimer’s amyloid-beta peptides via p75NTR/PLAIDD. J Neurochem 90(3):549–558PubMedCrossRefGoogle Scholar
  99. Heydari AR, Wu B, Takahashi R, Strong R, Richardson A (1993) Expression of heat shock protein 70 is altered by age and diet at the level of transcription. Mol Cell Biol 13:2909–2918PubMedGoogle Scholar
  100. Hoffmann GR (2009) A perspective on the scientific, philosophical and policy dimension of hormesis. Dose Response 7:1–51PubMedCrossRefGoogle Scholar
  101. Hueppe F (1896) Principles of bacteriology. Translated from the German by E.O. Jordan. The Open Court Publishing Company, ChicagoGoogle Scholar
  102. Hunt PR, Son TG, Wilson MA, Yu Q-S, Wood WH, Zhang Y, Becker KG, Greig NH, Mattson MP, Camandola S, Wolkow CA (2011) Extension of lifespan in C. elegans by naphthoquinones that act through stress hormesis mechanisms. PLoS One 6(7):e21922PubMedCrossRefGoogle Scholar
  103. Huybrechts M, Symann M, Trout A (1979) Effects of daunorubicin and doxorubicin, free and associated with DNA on hemopoietic stem cells. Cancer Res 39:3738–3743PubMedGoogle Scholar
  104. Ina Y, Sakai K (2004) Prolongation of life span associated with immunological modification by chronic low-dose-rate irradiation in MRL-lpr/lpr mice. Radiat Res 161:168–173PubMedCrossRefGoogle Scholar
  105. Ina Y, Sakai K (2005) Further study of prolongation of life span associated with immunological modification by chronic low-dose-rate irradiation in MRL-lpr/lpr mice: effects of whole-life irradiation. Radiat Res 163:418–423PubMedCrossRefGoogle Scholar
  106. Kahn A, Olsen A (2010) Stress to the rescue: is hormesis a “cure” for aging. Dose Response 8:48–52CrossRefGoogle Scholar
  107. Kaiser J (2003) Sipping from a poisoned chalice. Science 302:376–379PubMedCrossRefGoogle Scholar
  108. Kenny JF, Pangburn PC, Trail G (1976) Effect of estradiol on immune competence: in vivo and in vitro studies. Infect Immun 13(3):448–456PubMedGoogle Scholar
  109. Kiechl S, Willeit J, Poewe W, Egger G, Oberhollenzer F, Muggeo M, Bonora E (1996) Insulin sensitivity and regular alcohol consumption: large, prospective, cross sectional population study (Bruneck study). BMJ 313(7064):1040–1044PubMedCrossRefGoogle Scholar
  110. Kitani K, Minami C, Isobe K-I, Maehara K, Kanai S, Ivy GO, Carrillo M-C (2002) Why (-)deprenyl prolongs survivals of experimental animals: increase of anti-oxidant enzymes in brain and other body tissues as well as mobilization of various humoral factors may lead to systemic anti-aging effects. Mech Ageing Dev 123:1087–1100PubMedCrossRefGoogle Scholar
  111. Kitani K, Kanai S, Miyasaka K, Carillo M-C, Ivy GO (2005) Dose-dependency of life span prolongation of F344/DuCrj rats injected with (-)deprenyl. Biogerontology 6:297–302PubMedCrossRefGoogle Scholar
  112. Kolb H, Eizirik DL (2011) Resistance to type 2 diabetes mellitus: a matter of hormesis? Nat Rev Endocrinol 1–9. doi:10.1038/nrendo:2011:158
  113. Korotchkina LG, Leontieva OV, Bukreeva EI, Demidenko ZN, Gudkov AV, Blagosklonny MV (2010) The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway. Aging (Albany NY) 2:344–352Google Scholar
  114. Kregel KC, Moseley PL, Skidmore R, Gutierrez JA, Guerriero V Jr (1995) HSP70 accumulation in tissue of heat-stressed rats is blunted with advancing age. J Appl Physiol 79:1673–1678PubMedGoogle Scholar
  115. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293PubMedCrossRefGoogle Scholar
  116. Le Bourg E, Rattan SIS (eds) (2008a) Hormesis and aging: what’s the deal? In: Mild stress and healthy aging: applying hormesis in aging research and interventions. Springer, New York, pp 1–4Google Scholar
  117. Le Bourg E, Rattan SIS (eds) (2008b) Mild stress and healthy aging. Applying hormesis in aging research and interventions. Springer, New York, p 187Google Scholar
  118. Leontieva OV, Blagosklonny MV (2010) DNA damaging agents and p53 do not cause senescence in quiescent cells, while consecutive re-activation of mTOR is associated with conversion to senescence. Aging (Albany NY) 2:924–935Google Scholar
  119. Leontieva OV, Gudkov AV, Blagosklonny MV (2010) Weak p53 permits senescence during cell cycle arrest. Cell Cycle 9:4323–4327PubMedCrossRefGoogle Scholar
  120. Lithgow GJ, White TM, Melov S, Johnson TE (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci USA 92:7540–7544PubMedCrossRefGoogle Scholar
  121. Liu AYC, Lin Z, Choi H-S, Shorhage F, Li B (1989) Attenuated induction of heat shock gene expression in aging diploid fibroblasts. J Biol Chem 264:12037–12045PubMedGoogle Scholar
  122. Locke M, Tanguay RM (1996) Diminished heat shock response in the aged myocardium. Cell Stress Chaperones 1:251–260PubMedCrossRefGoogle Scholar
  123. Madeo F, Tavernarakis N, Kroemer G (2010) Can autophagy promote longevity? Nat Cell Biol 12:842–846PubMedCrossRefGoogle Scholar
  124. Marino G, Morselli E, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, Cabrera S, Benit P, Rustin P, Criollo A, Kepp O, Galluzzi L, Shen S, Malik SA, Maiuri MC, Horio Y, Lopez-Otin C, Andersen JS, Tavernarakis N, Madeo F, Kroemer G (2011) Longevity-relevant regulation of autophagy at the level of the acetylproteome. Autophagy 7(6):647–649PubMedCrossRefGoogle Scholar
  125. Martins I, Galluzzi L, Kroemer G (2011) Hormesis, cell death and aging. Aging 3(9):821–828PubMedGoogle Scholar
  126. Mattson MP, Calabrese EJ (2008) Best in small dose. New Sci 199(2668):36–39CrossRefGoogle Scholar
  127. Mattson MP, Calabrese EJ (eds) (2010) Hormesis: a revolution in biology, toxicology and medicine. Springer, New York, p 213Google Scholar
  128. Mattson MP, Cheng AW (2006) Neurohormetic phytochemicals: low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci 29:632–639PubMedCrossRefGoogle Scholar
  129. McAlister I, Finkelstein DB (1980) Heat shock proteins and thermal resistance in yeast. Biochem Biophys Res Commun 93:819–824PubMedCrossRefGoogle Scholar
  130. Morselli E, Galluzzi L, Kepp O, Vicencio JM, Criollo A, Maiuri MC, Kroemer G (2009) Anti- and pro-tumor functions of autophagy. Biochim Biophys Acta 1793:1524–1532PubMedCrossRefGoogle Scholar
  131. Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, Michaud M, Madeo F, Tavernarakis N, Kroemer G (2010) Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis 1:e10PubMedCrossRefGoogle Scholar
  132. Morselli E, Marino G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, Cabrera S, Benit P, Rustin P, Criollo A, Kepp O, Galluzzi L, Shen S, Malik SA, Maiuri MC, Horio Y, Lopez-Otin C, Andersin JS, Tavernarakis N, Madeo F, Kroemer G (2011) Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol 192(4):615–629PubMedCrossRefGoogle Scholar
  133. Murray CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia—a dealy of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136CrossRefGoogle Scholar
  134. Naito H, Powers SK, Demirel HA, Aoki J (2001) Exercise training increases heat shock protein in skeletal muscles of old rats. Med Sci Sports Exerc 33(5):729–734PubMedGoogle Scholar
  135. Niemann B, Chen Y, Issa H, Silber R-E, Rohrbach S (2010) Caloric restriction delays cardiac ageing in rats: role of mitochondria. Cardiovasc Res 88:267–276PubMedCrossRefGoogle Scholar
  136. Nitta Y, Abe K, Aoki M, Ohno I, Isoyama S (1994) Diminished heat shock protein 70 mRNA induction in aged rat hearts after ischemia. Am J Physiol 267(Heart Circ. Physiol. 36):H1795–H1803PubMedGoogle Scholar
  137. Olivieri G, Bodycote J, Wolff S (1984) Adaptive response of human-lymphocytes to low concentrations of radioactive thymidine. Science 223:594–597PubMedCrossRefGoogle Scholar
  138. Perini G, la-Bianca V, Politi V, Della VG, Dal-Pra I, Rossi F, Armato U (2002) Role of p75 neurotrophin receptor in the neurotoxicity by beta-amyloid peptides and synergistic effect of inflammatory cytokines. J Exp Med 195:907–918PubMedCrossRefGoogle Scholar
  139. Qu W, Zhao L, Peng X, Yang X, Ying C, Hao L, Sun X (2011) Biphasic effects of chronic ethanol exposure on insulin-stimulated glucose uptake in primary cultured rat skeletal muscle cells: role of the Akt pathway and GLUT4. Diabetes Metab Res Rev 27:47–53PubMedCrossRefGoogle Scholar
  140. Quirk JJ, Funder JW (1988) Steroid receptors and the generation of closely coupled/biphasic dose response curves. J Steroid Biochem 30:9–15PubMedCrossRefGoogle Scholar
  141. Quirk JJ, Gannell JE, Fullerton MJ, Funder JW (1986) Mechanisms of biphasic action of glucocorticoids on a-lactalbumin production by rat mammary gland explants. J Steroid Biochem 24:413–416PubMedCrossRefGoogle Scholar
  142. Roper PR, Drewinko B (1976) Comparison of in vitro methods to determine drug-induced cell lethality. Cancer Res 36:2182–2187PubMedGoogle Scholar
  143. Roy B, Rai U (2004) Dual mode of catecholamine action on splenic macrophage phagocytosis in wall lizard, Hemidactylus flaviviridis. Gen Comp Endocrinol 136:180–191PubMedCrossRefGoogle Scholar
  144. Samson L, Cairns J (1977) A new pathway for DNA in Escherichia coli. Nature 267:281–283PubMedCrossRefGoogle Scholar
  145. Sanders CL (2010) Radiation hormesis and the linear-no-threshold assumption. Springer, New York, p 217CrossRefGoogle Scholar
  146. Schulman D, Latchman DS, Yellon DM (2001) Effect of aging on the ability of preconditioning to protect rat hearts from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 281:H1630–H1636PubMedGoogle Scholar
  147. Schulz H (1885) About the treatment of cholera with veratrine. Ger Med Weekly Paper 11:99Google Scholar
  148. Schulz H (1887) Zur Lehre von der Arzneiwirdung. Virchows Arch Pathol Anat Physiol Klin Med 108:423–445CrossRefGoogle Scholar
  149. Schulz H (1888) Uber Hefegifte. Pflugers Archiv. fur die gesamte Physiologie des Menschen und der Tiere 42:517–541Google Scholar
  150. Selkoe DJ (2004) Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med 140:627–638PubMedGoogle Scholar
  151. Shim YH (2010) Cardioprotection and ageing. Korean J Anesthesiol 58(3):223–230PubMedCrossRefGoogle Scholar
  152. Silver N, Proctor GM, Arno M, Carpenter GH (2010) Activation of mTOR coincides with autophagy during ligation-induced atrophy in the rat submandibular gland. Cell Death Dis 1:e14PubMedCrossRefGoogle Scholar
  153. Sonneborn JS (2005) The myth and reality of reversal of aging by hormesis. Ann NY Acad Sci 1057:165–176PubMedCrossRefGoogle Scholar
  154. Sonneborn JS (2010) Mimetics of hormetic agents: stress-resistance triggers. Dose Response 8:97–121PubMedCrossRefGoogle Scholar
  155. Southam CM, Erhlich J (1943) Effects of extracts of western red-cedar heartwood on certain wood-decaying fungi in culture. Phytopathology 33:517–524Google Scholar
  156. Stebbing T (2011) A cybernetic view of biological growth: the Maia hypothesis. Cambridge University Press, CambridgeGoogle Scholar
  157. Szabadi E (1977) A model of two functionally antagonistic receptor populations activated by the same agonist. J Theor Biol 69:101–112PubMedCrossRefGoogle Scholar
  158. Szeto HH, Zhu Y-S, Umans JG, Dwyer G, Clare S, Aminone J (1988) Dual action of morphine on fetal breathing movements. J Pharmacol Exp Ther 245:537–542PubMedGoogle Scholar
  159. Thorin-Trescases N, Thorin E (2010) Vascular aging and oxidative stress: hormesis and adaptive cellular pathways. In: Bondy S, Maiese K (eds) Aging and age-related disorder. Humana Press, Inc., New York, p 472Google Scholar
  160. Toda N, Okamura T, Miyazaki M (1986) Age-dependent changes in the response of isolated beagle coronary arteries transmural electrical stimulation and catecholamines. J Pharmacol Exp Ther 238:319–326PubMedGoogle Scholar
  161. Tukaj S, Bisewska J, Roeske K, Tukaj Z (2011) Time- and dose-dependent induction of HSP 70 in Lemna minor exposed to different environmental stressors. Bull Environ Contam Toxicol 87:226–230PubMedCrossRefGoogle Scholar
  162. Ugazio G, Koch RR, Recknage RO (1973) Reversibility of liver damage in rats rendered resistant to carbon-tetrachloride by prior carbon-tetrachloride administration—bearing on lipoperoxidation hypothesis. Exp Mol Pathol 18:281–289PubMedCrossRefGoogle Scholar
  163. Van Wijk R, Wiegant FAC (1997) The similar principle as a therapeutic strategy: a research program on stimulation of self defense in disordered mammalian cells. Altern Ther Health Med 3:33–38PubMedGoogle Scholar
  164. Van Wijk R, Ovelgonne JH, Dokoning E, Jaarsveld K, Van Rijn J, Wiegant FAC (1994) Mild step-down heating causes increased transcription levels of hsp68 and hsp84 mRNA and enhances thermotolerance development in Reuber H35 hepatoma cells. Int J Hyperthermia 10:115–125PubMedCrossRefGoogle Scholar
  165. Vichi P, Tritton TR (1989) Stimulation of growth in human and murine cells by adriamycin. Cancer Res 49:2679–2682PubMedGoogle Scholar
  166. Wang JJ, Chervinsky PS, Rosen JM (1972) Comparative biochemical studies of adriamycin and duanomycin in leukemia cells. Cancer Res 32:511–515PubMedGoogle Scholar
  167. Wang JM, Jonston PB, Ball BG, Brinton RD (2005) The neurosteroid allopregnanolone promotes proliferation of rodent and human neural progenitor cells and regulates cell-cycle gene and protein expression. J Neurosci 25:4706–4718PubMedCrossRefGoogle Scholar
  168. Wang C, Tian Y, Wang X, Geng J, Jiang J, Yu H, Wang C (2010) Lead-contaminated soil induced oxidative stress, defense response and its indicative biomarkers in roots in Vicia faba seedlings. Ecotoxicology 19:1130–1139PubMedCrossRefGoogle Scholar
  169. Wiegant FAC, Van Rijn J, van Wijk R (1997) Enhancement of the stress response by minute amounts of cadmium in sensitized Reuber H35 hepatoma cells. Toxicology 116:27–37PubMedCrossRefGoogle Scholar
  170. Wiegant FAC, Spieker N, van Wijk R (1998) Stressor-specific enhancement of hsp induction by low doses of stressors in conditions of self- and cross-sensitization. Toxicology 127:107–119PubMedCrossRefGoogle Scholar
  171. Wiegant FAC, Souren JEM, van Wijk R (1999) Stimulation of survival capacity in heat-shocked cells by subsequent exposure to minute amounts of chemical stressors: role of similarity in hsp-inducing effects. Hum Exp Toxicol 18:460–470PubMedCrossRefGoogle Scholar
  172. Yerkes RM, Dodson JD (1908) The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol 18:459–482CrossRefGoogle Scholar
  173. Zhu Y-S, Szeto HH (1989) Morphine-induced tachycardia in fetal lambs: a bell-shaped dose-response curve. J Pharmacol Exp Ther 249:78–82PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Edward J. Calabrese
    • 1
  • Ivo Iavicoli
    • 2
  • Vittorio Calabrese
    • 3
  1. 1.Department of Public Health, Environmental Health SciencesUniversity of MassachusettsAmherstUSA
  2. 2.Istituto di Medicina del LavoroUniversitá Cattolica del Sacro CuoreRomaItaly
  3. 3.Department of ChemistryUniversity of CataniaCataniaItaly

Personalised recommendations