, Volume 12, Issue 6, pp 599–609 | Cite as

Gut microbiota as a candidate for lifespan extension: an ecological/evolutionary perspective targeted on living organisms as metaorganisms

  • E. OttavianiEmail author
  • N. Ventura
  • M. Mandrioli
  • M. Candela
  • A. Franchini
  • C. Franceschi
Opinion Article


An emerging central concept in evolutionary biology suggests that symbiosis is a universal characteristic of living organisms that can help in understanding complex traits and phenotypes. During evolution, an integrative circuitry fundamental for survival has been established between commensal gut microbiota and host. On the basis of recent knowledge in worms, flies, and humans, an important role of the gut microbiota in aging and longevity is emerging. The complex bacterial community that populates the gut and that represents an evolutionary adapted ecosystem correlated with nutrition appears to limit the accumulation of pathobionts and infections in all taxa, being able of affecting the efficiency of the host immune system and exerting systemic metabolic effects. There is an urgent need to disentangle the underpinning molecular mechanisms, which could shed light on the basic mechanisms of aging in an ecological perspective. Thus, it appears possible to extend healthy aging and lifespan by targeting the host as a metaorganism by manipulating the complex symbiotic ecosystem of gut microbiota, as well as other possible ecosystems of the body.


Gut microbiota Aging Longevity Hormesis Worms Flies Humans Symbiosis evolution 



This work was supported by MURST (Italy) grants.


  1. Arumugam TV, Gleichmann M, Tang SC, Mattson MP (2006) Hormesis/preconditioning mechanisms, the nervous system and aging. Ageing Res Rev 5:165–178PubMedCrossRefGoogle Scholar
  2. Avery L, Shtonda BB (2003) Food transport in the C. elegans pharynx. J Exp Biol 206:2441–2457PubMedCrossRefGoogle Scholar
  3. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkïla J, Monti D, Satokari R, Franceschi C, Brigidi P, De Vos W (2010) Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5:e10667PubMedCrossRefGoogle Scholar
  4. Biagi E, Candela M, Fairweather-Tait S, Franceschi C, Brigidi P (2011) Aging of the human metaorganism: the microbial counterpart. Age (Dordr). doi:  10.1007/s11357-011-9217-5
  5. Biteau B, Hochmuth CE, Jasper H (2008) JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3:442–455PubMedCrossRefGoogle Scholar
  6. Biteau B, Karpac J, Supoyo S, Degennaro M, Lehmann R, Jasper H (2010) Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS Genet 14:e1001159CrossRefGoogle Scholar
  7. Blaser MJ, Falkow S (2009) What are the consequences of the disappearing human microbiota? Nat Rev Microbiol 7:887–894PubMedCrossRefGoogle Scholar
  8. Blaser MJ, Kirschner D (2007) The equilibria that allow bacterial persistence in human hosts. Nature 449:843–849PubMedCrossRefGoogle Scholar
  9. Brenner S (2009) In the beginning was the worm. Genetics 182:413–415PubMedCrossRefGoogle Scholar
  10. Brivio MF, Mastore M, Pagani M (2005) Parasite-host relationship: a lesson from a professional killer. Inv Surv J 2:41–53Google Scholar
  11. Brown KL, Hancock RE (2006) Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 18:24–30PubMedCrossRefGoogle Scholar
  12. Brummel T, Ching A, Seroude L, Simon AF, Benzer S (2004) Drosophila lifespan enhancement by exogenous bacteria. Proc Natl Acad Sci USA 101:12974–12979PubMedCrossRefGoogle Scholar
  13. Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23:2333–2344PubMedCrossRefGoogle Scholar
  14. Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L, Cedergreen N, Cherian MG, Chiueh CC, Clarkson TW, Cook RR, Diamond DM, Doolittle DJ, Dorato MA, Duke SO, Feinendegen L, Gardner DE, Hart RW, Hastings KL, Hayes AW, Hoffmann GR, Ives JA, Jaworowski Z, Johnson TE, Jonas WB, Kaminski NE, Keller JG, Klaunig JE, Knudsen TB, Kozumbo WJ, Lettieri T, Liu SZ, Maisseu A, Maynard KI, Masoro EJ, McClellan RO, Mehendale HM, Mothersill C, Newlin DB, Nigg HN, Oehme FW, Phalen RF, Philbert MA, Rattan SI, Riviere JE, Rodricks J, Sapolsky RM, Scott BR, Seymour C, Sinclair DA, Smith-Sonneborn J, Snow ET, Spear L, Stevenson DE, Thomas Y, Tubiana M, Williams GM, Mattson MP (2007) Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework. Toxicol Appl Pharmacol 222:122–128PubMedCrossRefGoogle Scholar
  15. Candela M, Maccaferri S, Turroni S, Carnevali P, Brigidi P (2010) Functional intestinal microbiome, new frontiers in prebiotic design. Int J Food Microbiol 140:93–101PubMedCrossRefGoogle Scholar
  16. Candela M, Guidotti M, Fabbri A, Brigidi P, Franceschi C, Fiorentini C (2011) Human intestinal microbiota: cross-talk with the host and its potential role in colorectal cancer. Crit Rev Microbiol 37:1–14PubMedCrossRefGoogle Scholar
  17. Cevenini E, Caruso C, Candore G, Capri M, Nuzzo D, Duro G, Rizzo C, Colonna-Romano G, Lio D, Di Carlo D, Palmas MG, Scurti M, Pini E, Franceschi C, Vasto S (2010) Age-related inflammation: The contribution of different organs, tissues and systems. How to face it for therapeutic approaches. Curr Pharm Des 16:609–618PubMedCrossRefGoogle Scholar
  18. Charnley AK, Hunt J, Dillon AR (1995) The germ-free culture of desert locusts, Schistocerca gregaria. J Insect Physiol 31:477–485CrossRefGoogle Scholar
  19. Choi NH, Kim JG, Yang DJ, Kim YS, Yoo MA (2008) Age-related changes in Drosophila midgut are associated with PVF2, a PDGF/VEGF-like growth factor. Aging Cell 7:318–334PubMedCrossRefGoogle Scholar
  20. Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O’Connor M, Harnedy N, O’Connor K, Henry C, O’Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O’Toole PW (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 108(Suppl 1):4586–4591PubMedCrossRefGoogle Scholar
  21. Collins JJ, Evason K, Kornfeld K (2006) Pharmacology of delayed aging and extended lifespan of Caenorhabditis elegans. Exp Gerontol 41:1032–1039PubMedCrossRefGoogle Scholar
  22. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697PubMedCrossRefGoogle Scholar
  23. Cypser JR, Tedesco P, Johnson TE (2006) Hormesis and aging in Caenorhabditis elegans. Exp Gerontol 41:935–939PubMedCrossRefGoogle Scholar
  24. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696PubMedCrossRefGoogle Scholar
  25. De Martinis M, Franceschi C, Monti D, Ginaldi L (2006) Inflammation markers predicting frailty and mortality in the elderly. Exp Mol Pathol 80:219–227PubMedCrossRefGoogle Scholar
  26. DeVeale B, Brummel T, Seroude L (2004) Immunity and aging: the enemy within? Aging Cell 3:195–208PubMedCrossRefGoogle Scholar
  27. Dillon RJ, Charnley AK (1996) Colonization of the guts of germ-free desert locusts, Schistocerca gregaria, by the bacterium Pantoea agglomerans. J Invertebr Pathol 67:11–14CrossRefGoogle Scholar
  28. Dillon R, Charnley K (2005) Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol 153:503–509CrossRefGoogle Scholar
  29. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: Nonpathogenic interactions. Annu Rev Entomol 49:71–92PubMedCrossRefGoogle Scholar
  30. Dillon RJ, Vennard CT, Buckling A, Charnley AK (2005) Diversity of locust gut bacteria protects against pathogen invasion. Ecol Lett 8:1291–1298CrossRefGoogle Scholar
  31. Evans EA, Kawli T, Tan MW (2008) Pseudomonas aeruginosa suppresses host immunity by activating the DAF-2 insulin-like signalling pathway in Caenorhabditis elegans. PLoS Pathog 4:e1000175PubMedCrossRefGoogle Scholar
  32. Fang-Yen C, Avery L, Samuel AD (2009) Two size-selective mechanisms specifically trap bacteria-sized food particles in Caenorhabditis elegans. Proc Natl Acad Sci USA 106:20093–20096PubMedGoogle Scholar
  33. Franceschi C (2007) Inflamm-aging as a major characteristic of old people: Can it be prevented or cured? Nutr Rev 65:S173–S176PubMedCrossRefGoogle Scholar
  34. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S (2007) Inflamm-aging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105PubMedCrossRefGoogle Scholar
  35. Fry AJ, Rand DM (2002) Wolbachia interactions that determine Drosophila melanogaster survival. Evolution 56:1976–1981PubMedGoogle Scholar
  36. Fuhrman LE, Goel AK, Smith J, Shianna KV, Aballay A (2009) Nucleolar proteins suppress Caenorhabditis elegans innate immunity by inhibiting p53/CEP-1. PLoS Genet 5:e1000657PubMedCrossRefGoogle Scholar
  37. Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161:1101–1112PubMedGoogle Scholar
  38. Garrett WS, Gordon JI, Glimcher LH (2010) Homeostasis and inflammation in the intestine. Cell 140:859–870PubMedCrossRefGoogle Scholar
  39. Gavini F, Cayuela C, Antoine JM, Lecoq C, Le Fabure B, Membré JM, Neut C (2001) Differences in distribution of bifidobacterial and enterobacterial species in human fecal microflora of three different (children, adults, elderly) age groups. Microb Ecol Health Dis 13:40–45CrossRefGoogle Scholar
  40. Greer EL, Brunet A (2009) Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8:113–127PubMedCrossRefGoogle Scholar
  41. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–912PubMedCrossRefGoogle Scholar
  42. Hengartner MO (1997) Genetic control of programmed cell death and aging in the nematode Caenorhabditis elegans. Exp Gerontol 32:363–374PubMedCrossRefGoogle Scholar
  43. Hodgkin J, Kuwabara PE, Corneliussen B (2000) A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Curr Biol 10:1615–1618PubMedCrossRefGoogle Scholar
  44. Hooper LV, Macpherson AJ (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10:159–169PubMedCrossRefGoogle Scholar
  45. Ikeda T, Yasui C, Hoshino K, Arikawa K, Nishikawa Y (2007) Influence of lactic acid bacteria on longevity of Caenorhabditis elegans and host defense against Salmonella enterica serovar enteritidis. Appl Environ Microbiol 73:6404–6409PubMedCrossRefGoogle Scholar
  46. Irazoqui JE, Ng A, Xavier RJ, Ausubel FM (2008) Role for beta-catenin and HOX transcription factors in Caenorhabditis elegans and mammalian host epithelial-pathogen interactions. Proc Natl Acad Sci USA 105:17469–17474PubMedCrossRefGoogle Scholar
  47. Jia W, Li H, Zhao L, Nicholson JK (2008) Gut microbiota: a potential new territory for drug targeting. Nat Rev Drug Discov 7:123–129PubMedCrossRefGoogle Scholar
  48. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327–336PubMedCrossRefGoogle Scholar
  49. Komura T, Yasui C, Miyamoto H, Nishikawa Y (2010) Caenorhabditis elegans as an alternative model host for Legionella pneumophila, and protective effects of Bifidobacterium infantis. Appl Environ Microbiol 76:4105–4108PubMedCrossRefGoogle Scholar
  50. Kurz CL, Chauvet S, Andrès E, Aurouze M, Vallet I, Michel GP, Uh M, Celli J, Filloux A, De Bentzmann S, Steinmetz I, Hoffmann JA, Finlay BB, Gorvel JP, Ferrandon D, Ewbank JJ (2003) Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J 22:1451–1460PubMedCrossRefGoogle Scholar
  51. Labrousse A, Chauvet S, Couillault C, Kurz CL, Ewbank JJ (2000) Caenorhabditis elegans is a model host for Salmonella typhimurium. Curr Biol 10:1543–1545PubMedCrossRefGoogle Scholar
  52. Larbi A, Franceschi C, Mazzatti D, Solana R, Wikby A, Pawelec G (2008) Aging of the immune system as a prognostic factor of human longevity. Physiology 23:64–74PubMedCrossRefGoogle Scholar
  53. Laws TR, Harding SV, Smith MP, Atkins TP, Titball RW (2004) Age influences resistance of Caenorhabditis elegans to killing by pathogenic bacteria. FEMS Microbiol Lett 234:281–287PubMedCrossRefGoogle Scholar
  54. Lazzaro BP (2008) Natural selection on the Drosophila antimicrobial immune system. Curr Opin Microbiol 11:284–289PubMedCrossRefGoogle Scholar
  55. Le Bourg E, Rattan SIS (2008) Mild stress and healthy aging. Springer, Dordrecht, p 187CrossRefGoogle Scholar
  56. Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Ann Rev Immunol 25:697–743CrossRefGoogle Scholar
  57. Lenaerts I, Walker GA, Van Hoorebeke L, Gems D, Vanfleteren JR (2008) Dietary restriction of Caenorhabditis elegans by axenic culture reflects nutritional requirement for constituents provided by metabolically active microbes. J Gerontol A Biol Sci Med Sci 63:242–252PubMedGoogle Scholar
  58. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788PubMedCrossRefGoogle Scholar
  59. Macdonald TT, Monteleone G (2005) Immunity, inflammation, and allergy in the gut. Science 307:1920–1925PubMedCrossRefGoogle Scholar
  60. Mäkivuokko H, Tiihonen K, Tynkkynen S, Paulin L, Rautonen N (2010) The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. Br J Nutr 103:227–234PubMedCrossRefGoogle Scholar
  61. Malagoli D, Mandrioli M (2010) Gene silencing and the analysis of immune response in model insects. In: Catalano AJ (ed) Gene silencing: theory techniques and applications. Nova Science Publishers Inc, Hauppauge, pp 167–182Google Scholar
  62. Mallo GV, Kurz CL, Couillault C, Pujol N, Granjeaud S, Kohara Y, Ewbank JJ (2002) Inducible antibacterial defense system in C. elegans. Curr Biol 12:1209–1214PubMedCrossRefGoogle Scholar
  63. Mandrioli M (2009) The interaction insect–symbiont, rather than insect-pathogen, may open new perspectives in the understanding of the host choice in bacteria. Inv Surv J 6:98–101Google Scholar
  64. Mandrioli M, Bugli S, Saltini S, Genedani S, Ottaviani E (2003) Molecular characterization of a defensin in the IZD-MB-0503 cell line derived from immunocytes of the insect Mamestra brassicae (Lepidoptera). Biol Cell 95:53–57PubMedCrossRefGoogle Scholar
  65. Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, Corthier G, Furet JP (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:123PubMedCrossRefGoogle Scholar
  66. Maslowski KM, Mackay CR (2011) Diet, gut microbiota and immune responses. Nat Immunol 12:5–9PubMedCrossRefGoogle Scholar
  67. Maynard CL, Weaver CT (2009) Intestinal effector T cells in health and disease. Immunity 31:389–400PubMedCrossRefGoogle Scholar
  68. McFall-Ngai M (2008) Are biologists in ‘future shock’? Symbiosis integrates biology across domains. Nat Rev Microbiol 6:789–792PubMedCrossRefGoogle Scholar
  69. Min KT, Benzer S (1997) Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early-death. Proc Natl Acad Sci USA 94:10792–10796PubMedCrossRefGoogle Scholar
  70. Müller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, Cresci A, Silvi S, Orpianesi C, Verdenelli MC, Clavel T, Koebnick C, Zunft HJF, Doré J, Blaut M (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: A cross-sectional study. Appl Environ Microbiol 72:1027–1033CrossRefGoogle Scholar
  71. Müller U, Vogel P, Alber G, Schaub GA (2008) The innate immune system of mammals and insects. Contrib Microbiol 15:21–44PubMedGoogle Scholar
  72. Naidu AS, Bidlack WR, Clemens RA (1999) Probiotic spectra of lactic acid bacteria (LAB). Crit Rev Food Sci Nutr 39:13–126PubMedCrossRefGoogle Scholar
  73. Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136:65–80PubMedCrossRefGoogle Scholar
  74. Noverr MC, Huffnagle GB (2004) Does the microbiota regulate immune responses outside the gut? Trends Microbiol 12:562–568PubMedCrossRefGoogle Scholar
  75. Ostan R, Bucci L, Capri M, Salvioli S, Scurti M, Pini E, Monti D, Franceschi C (2008) Immunosenescence and immunogenetics of human longevity. Neuroimmunomodulation 15:224–240PubMedCrossRefGoogle Scholar
  76. Rajilić-Stojanović M, Smidt H, de Vos WM (2007) Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9:2125–2136PubMedCrossRefGoogle Scholar
  77. Rajilić-Stojanović M, Heilig HG, Molenaar D, Kajander K, Surakka A, Smidt H, de Vos WM (2009) Development and application of the Human Intestinal Tract Chip, a phylogenetic microarray: Analysis of the universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol 11:1736–1751PubMedCrossRefGoogle Scholar
  78. Rankin CH (2006) Nematode behavior: the taste of success, the smell of danger!. Curr Biol 16:R89–R91PubMedCrossRefGoogle Scholar
  79. Rattan SI (2008) Hormesis in aging. Ageing Res Rev 7:63–78PubMedCrossRefGoogle Scholar
  80. Rawls JF (2007) Enteric infection and inflammation alter gut microbial ecology. Cell Host Microbe 2:73–74PubMedCrossRefGoogle Scholar
  81. Reinke SN, Hu X, Sykes BD, Lemire BD (2010) Caenorhabditis elegans diet significantly affects metabolic profile, mitochondrial DNA levels, lifespan and brood size. Mol Genet Metab 100:274–282PubMedCrossRefGoogle Scholar
  82. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323PubMedCrossRefGoogle Scholar
  83. Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW, Lee DG, Shin SC, Ha EM, Lee WJ (2008) Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila. Science 319:777–782PubMedCrossRefGoogle Scholar
  84. Saiki R, Lunceford AL, Bixler T, Dang P, Lee W, Furukawa S, Larsen PL, Clarke CF (2008) Altered bacterial metabolism, not coenzyme Q content, is responsible for the lifespan extension in Caenorhabditis elegans fed an Escherichia coli diet lacking coenzyme Q. Aging Cell 7:291–304PubMedCrossRefGoogle Scholar
  85. Sansonetti PJ (2011) To be or not to be a pathogen: that is the mucosally relevant question. Mucosal Immunol 4:8–14PubMedCrossRefGoogle Scholar
  86. Sansonetti PJ, Medzhitov R (2009) Learning tolerance while fighting ignorance. Cell 138:416–420PubMedCrossRefGoogle Scholar
  87. Schmidt O, Rahman MM, Ma G, Theopold U, Sun Y, Sarjan M, Fabbri M, Roberts H (2005) Mode of action of antimicrobial proteins, pore-forming toxins and biologically active peptides (hypothesis). Inv Surv J 2:82–90Google Scholar
  88. Shivers RP, Youngman MJ, Kim DH (2008) Transcriptional responses to pathogens in Caenorhabditis elegans. Curr Opin Microbiol 11:251–256PubMedCrossRefGoogle Scholar
  89. Shtonda BB, Avery L (2006) Dietary choice behavior in Caenorhabditis elegans. J Exp Biol 209:89–102PubMedCrossRefGoogle Scholar
  90. Star DJ, Cline TW (2002) Host parasite interaction rescues Drosophila oogenesis defects. Nature 418:76–79CrossRefGoogle Scholar
  91. Tan MW, Rahme LG, Sternberg JA, Tompkins RG, Ausubel FM (1999) Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci USA 96:2408–2413PubMedCrossRefGoogle Scholar
  92. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810PubMedCrossRefGoogle Scholar
  93. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484PubMedCrossRefGoogle Scholar
  94. Turnbaugh PJ, Quince C, Faith JJ, McHardy AC, Yatsunenko T, Niazi F, Affourtit J, Egholm M, Henrissat B, Knight R, Gordon JI (2010) Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci USA 107:7503–7508PubMedCrossRefGoogle Scholar
  95. Ventura N, Rea SL, Schiavi A, Torgovnick A, Testi R, Johnson TE (2009) p53/CEP-1 increases or decreases lifespan, depending on level of mitochondrial bioenergetic stress. Aging Cell 8:380–393PubMedCrossRefGoogle Scholar
  96. Weksler ME, Pawelec G, Franceschi C (2009) Immune therapy for age-related diseases. Trends Immunol 30:344–350PubMedCrossRefGoogle Scholar
  97. Woodmansey EJ, McMurdo ME, Macfarlane GT, Macfarlane S (2004) Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic treated elderly subjects. Appl Environ Microbiol 70:6113–6122PubMedCrossRefGoogle Scholar
  98. Yang YY, Gangoiti JA, Sedensky MM, Morgan PG (2009) The effect of different ubiquinones on lifespan in Caenorhabditis elegans. Mech Ageing Dev 130:370–376PubMedCrossRefGoogle Scholar
  99. Zhang X, Zhang Y (2009) Neural-immune communication in Caenorhabditis elegans. Cell Host Microbe 5:425–429PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • E. Ottaviani
    • 1
    Email author
  • N. Ventura
    • 2
  • M. Mandrioli
    • 1
  • M. Candela
    • 3
  • A. Franchini
    • 1
  • C. Franceschi
    • 4
  1. 1.Department of BiologyUniversity of Modena and Reggio EmiliaModenaItaly
  2. 2.Department of Experimental Medicine and Biochemical SciencesUniversity of Rome “Tor Vergata”RomeItaly
  3. 3.Department of Pharmaceutical SciencesUniversity of BolognaBolognaItaly
  4. 4.Department of Experimental Pathology and CIG–Interdipartimental Center L. GalvaniUniversity of BolognaBolognaItaly

Personalised recommendations