, Volume 13, Issue 1, pp 63–75 | Cite as

Progeroid syndromes: models for stem cell aging?

  • I. BellantuonoEmail author
  • G. Sanguinetti
  • W. N. Keith
Review Article


Stem cells are responsible for tissue repair and maintenance and it is assumed that changes observed in the stem cell compartment with age underlie the concomitant decline in tissue function. Studies in murine models have highlighted the importance of intrinsic changes occurring in stem cells with age. They have also drawn the attention to other factors, such as changes in the local or systemic environment as the primary cause of stem cell dysfunction. Whilst knowledge in murine models has been advancing rapidly there has been little translation of these data to human aging. This is most likely due to the difficulties of testing the regenerative capacity of human stem cells in vivo and to substantial differences in the aging phenotype within humans. Here we summarize evidence to show how progeroid syndromes, integrated with other models, can be valuable tools in addressing questions about the role of stem cell aging in human degenerative diseases of older age and the molecular pathways involved.


Down syndrome Notch Wnt Hematopoietic Mesenchymal System biology 



Research in the authors labs is supported by Cancer Research UK, European Community grants LSHC-CT-2004-502943, Health-F2-2007-200950, Glasgow University and Strategic Promotion of Ageing Research Capacity.


  1. Ademokun A, Wu YC et al (2010) The ageing B cell population: composition and function. Biogerontology 11(2):125–137PubMedCrossRefGoogle Scholar
  2. Allsopp RC, Morin GB et al (2003) Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 102(2):517–520PubMedCrossRefGoogle Scholar
  3. Angelopoulou N, Matziari C et al (2000) Bone mineral density and muscle strength in young men with mental retardation (with and without Down syndrome). Calcif Tissue Int 66(3):176PubMedCrossRefGoogle Scholar
  4. Bahn S, Mimmack M et al (2002) Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with Down’s syndrome: a gene expression study. Lancet 359(9303):310–315PubMedCrossRefGoogle Scholar
  5. Barlow C, Hirotsune S et al (1996) Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86(1):159–171PubMedCrossRefGoogle Scholar
  6. Baxter MA, Wynn RF et al (2004) Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22(5):675–682PubMedCrossRefGoogle Scholar
  7. Beerman I, Bhattacharya D et al (2010) Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci U S A 107(12):5465–5470PubMedCrossRefGoogle Scholar
  8. Bellantuono I, Keith WN (2007) Stem cell ageing: does it occur and can we intervene? Expert Rev Mol Med 9(31):1–20PubMedCrossRefGoogle Scholar
  9. Blackburn EH (2005) Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 579(4):859–862PubMedCrossRefGoogle Scholar
  10. Blasco MA (2007) Telomere length, stem cells and aging. Nat Chem Biol 3(10):640–649PubMedCrossRefGoogle Scholar
  11. Bug G, Gul H et al (2005) Valproic acid stimulates proliferation and self-renewal of hematopoietic stem cells. Cancer Res 65(7):2537–2541PubMedCrossRefGoogle Scholar
  12. Cairney CJ, Sanguinetti G et al (2009) A systems biology approach to Down syndrome: identification of Notch/Wnt dysregulation in a model of stem cells aging. Biochim Biophys Acta 1792:353–363PubMedGoogle Scholar
  13. Carmichael CL, Majewski IJ et al (2009) Hematopoietic defects in the Ts1Cje mouse model of Down syndrome. Blood 113(9):1929–1937PubMedCrossRefGoogle Scholar
  14. Chakraborty S, Sun CL et al (2009) Accelerated telomere shortening precedes development of therapy-related myelodysplasia or acute myelogenous leukemia after autologous transplantation for lymphoma. J Clin Oncol 27(5):791–798PubMedCrossRefGoogle Scholar
  15. Chen S, Do JT et al (2006) Self-renewal of embryonic stem cells by a small molecule. Proc Natl Acad Sci U S A 103(46):17266–17271PubMedCrossRefGoogle Scholar
  16. Cho RH, Sieburg HB et al (2008) A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 111(12):5553–5561PubMedCrossRefGoogle Scholar
  17. Choudhury AR, Ju Z et al (2007) Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 39(1):99–105PubMedCrossRefGoogle Scholar
  18. Creutzig U, Ritter J et al (1996) Myelodysplasia and acute myelogenous leukemia in Down’s syndrome. A report of 40 children of the AML-BFM study group. Leukemia 10(11):1677–1686PubMedGoogle Scholar
  19. De Felice L, Tatarelli C et al (2005) Histone deacetylase inhibitor valproic acid enhances the cytokine-induced expansion of human hematopoietic stem cells. Cancer Res 65(4):1505–1513PubMedCrossRefGoogle Scholar
  20. de Lange T (2002) Protection of mammalian telomeres. Oncogene 21(4):532–540PubMedCrossRefGoogle Scholar
  21. Drachtman RA, Alter BP (1995) Dyskeratosis congenita. Dermatol Clin 13(1):33–39PubMedGoogle Scholar
  22. Enwere E, Shingo T et al (2004) Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci 24(38):8354–8365PubMedCrossRefGoogle Scholar
  23. Epstein CJ, Hofmeister BG et al (1985) Stem cell deficiencies and thymic abnormalities in fetal mouse trisomy 16. J Exp Med 162(2):695–712PubMedCrossRefGoogle Scholar
  24. Ertl RP, Chen J et al (2008) Effects of dietary restriction on hematopoietic stem-cell aging are genetically regulated. Blood 111(3):1709–1716PubMedCrossRefGoogle Scholar
  25. Espada J, Varela I et al (2008) Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J Cell Biol 181(1):27–35PubMedCrossRefGoogle Scholar
  26. Ferron S, Mira H et al (2004) Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells. Development 131(16):4059–4070PubMedCrossRefGoogle Scholar
  27. Flores I, Blasco MA (2010) The role of telomeres and telomerase in stem cell aging. FEBS Lett 584(17):3826–3830PubMedCrossRefGoogle Scholar
  28. Flores I, Cayuela ML et al (2005) Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309(5738):1253–1256PubMedCrossRefGoogle Scholar
  29. Flores I, Canela A et al (2008) The longest telomeres: a general signature of adult stem cell compartments. Genes Dev 22(5):654–667PubMedCrossRefGoogle Scholar
  30. Frasca D, Blomberg BB (2009) Effects of aging on B cell function. Curr Opin Immunol 21(4):425–430PubMedCrossRefGoogle Scholar
  31. Gambardella A, Nagaraju CK et al (2011) Glycogen synthase kinase-3alpha/beta inhibition promotes in vivo amplification of endogenous mesenchymal progenitors with osteogenic and adipogenic potential and their differentiation to the osteogenic lineage. J Bone Miner Res 26(4):811–821PubMedCrossRefGoogle Scholar
  32. Grolleau-Julius A, Ray D et al (2010) The role of epigenetics in aging and autoimmunity. Clin Rev Allergy Immunol 39(1):42–50PubMedCrossRefGoogle Scholar
  33. Harley CB, Futcher AB et al (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345(6274):458–460PubMedCrossRefGoogle Scholar
  34. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621CrossRefGoogle Scholar
  35. Haynes L, Maue AC (2009) Effects of aging on T cell function. Curr Opin Immunol 21(4):414–417PubMedCrossRefGoogle Scholar
  36. Herndon LA, Schmeissner PJ et al (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419(6909):808–814PubMedCrossRefGoogle Scholar
  37. Herrera E, Samper E et al (1999) Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J 18(11):2950–2960PubMedCrossRefGoogle Scholar
  38. Hilton MJ, Tu X et al (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14(3):306–314PubMedCrossRefGoogle Scholar
  39. Hofer AC, Tran RT et al (2005) Shared phenotypes among segmental progeroid syndromes suggest underlying pathways of aging. J Gerontol A Biol Sci Med Sci 60(1):10–20PubMedCrossRefGoogle Scholar
  40. Holmes DK, Bates N et al (2006) Hematopoietic progenitor cell deficiency in fetuses and children affected by Down’s syndrome. Exp Hematol 34(12):1611–1615PubMedCrossRefGoogle Scholar
  41. Ikuta K, Kina T et al (1990) A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell 62(5):863–874PubMedCrossRefGoogle Scholar
  42. Jaskelioff M, Muller FL et al (2010) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469:102–106PubMedCrossRefGoogle Scholar
  43. Jawaheer D, Seldin MF et al (2003) Screening the genome for rheumatoid arthritis susceptibility genes: a replication study and combined analysis of 512 multicase families. Arthritis Rheum 48(4):906–916PubMedCrossRefGoogle Scholar
  44. Jiang H, Schiffer E et al (2008) Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease. Proc Natl Acad Sci U S A 105(32):11299–11304PubMedCrossRefGoogle Scholar
  45. Ju Z, Jiang H et al (2007) Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat Med 13(6):742–747PubMedCrossRefGoogle Scholar
  46. Kantor AB, Herzenberg LA (1993) Origin of murine B cell lineages. Annu Rev Immunol 11:501–538PubMedCrossRefGoogle Scholar
  47. Karlson EW, Chibnik LB et al (2009) Biomarkers of inflammation and development of rheumatoid arthritis in women from two prospective cohort studies. Arthritis Rheum 60(3):641–652PubMedCrossRefGoogle Scholar
  48. Kerbauy DM, Lesnikov V et al (2004) Engraftment of distinct clonal MDS-derived hematopoietic precursors in NOD/SCID-beta2-microglobulin-deficient mice after intramedullary transplantation of hematopoietic and stromal cells. Blood 104(7):2202–2203PubMedCrossRefGoogle Scholar
  49. Kirkwood TB (2005) Understanding the odd science of aging. Cell 120(4):437–447PubMedCrossRefGoogle Scholar
  50. Kirkwood TB, Finch CE (2002) Ageing: the old worm turns more slowly. Nature 419(6909):794–795PubMedCrossRefGoogle Scholar
  51. Kirsammer G, Jilani S et al (2008) Highly penetrant myeloproliferative disease in the Ts65Dn mouse model of Down syndrome. Blood 111(2):767–775PubMedCrossRefGoogle Scholar
  52. Kollman C, Howe CW et al (2001) Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: the effect of donor age. Blood 98(7):2043–2051PubMedCrossRefGoogle Scholar
  53. Lafreniere D, Mann N (2009) Anosmia: loss of smell in the elderly. Otolaryngol Clin North Am 42(1):123–131 xPubMedCrossRefGoogle Scholar
  54. Lee HW, Blasco MA et al (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392(6676):569–574PubMedCrossRefGoogle Scholar
  55. Martin GM (2005) Genetic modulation of senescent phenotypes in Homo sapiens. Cell 120(4):523–532PubMedCrossRefGoogle Scholar
  56. Masi AT (1994) Incidence of rheumatoid arthritis: do the observed age-sex interaction patterns support a role of androgenic-anabolic steroid deficiency in its pathogenesis? Br J Rheumatol 33(8):697–699PubMedCrossRefGoogle Scholar
  57. Miller JP, Allman D (2003) The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J Immunol 171(5):2326–2330PubMedGoogle Scholar
  58. Min H, Montecino-Rodriguez E et al (2006) Effects of aging on the common lymphoid progenitor to pro-B cell transition. J Immunol 176(2):1007–1012PubMedGoogle Scholar
  59. Molofsky AV, Slutsky SG et al (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443(7110):448–452PubMedCrossRefGoogle Scholar
  60. Morrison SJ, Prowse KR et al (1996) Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 5(3):207–216PubMedCrossRefGoogle Scholar
  61. Naveiras O, Nardi V et al (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460(7252):259–263PubMedCrossRefGoogle Scholar
  62. Nespoli L, Burgio GR et al (1993) Immunological features of Down’s syndrome: a review. J Intellect Disabil Res 37(Pt 6):543–551PubMedGoogle Scholar
  63. Nimer SD (2008) Myelodysplastic syndromes. Blood 111(10):4841–4851PubMedCrossRefGoogle Scholar
  64. Nishimura EK, Granter SR et al (2005) Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307(5710):720–724PubMedCrossRefGoogle Scholar
  65. Omidvar N, Kogan S et al (2007) BCL-2 and mutant NRAS interact physically and functionally in a mouse model of progressive myelodysplasia. Cancer Res 67(24):11657–11667PubMedCrossRefGoogle Scholar
  66. Ozgenc A, Loeb LA (2005) Current advances in unraveling the function of the Werner syndrome protein. Mutat Res 577(1–2):237–251PubMedGoogle Scholar
  67. Pignolo RJ, Suda RK et al (2008) Defects in telomere maintenance molecules impair osteoblast differentiation and promote osteoporosis. Aging Cell 7(1):23–31PubMedCrossRefGoogle Scholar
  68. Raaijmakers MH, Mukherjee S et al (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464(7290):852–857PubMedCrossRefGoogle Scholar
  69. Rauner M, Sipos W et al (2009) Inhibition of Lamin A/C attenuates osteoblast differentiation and enhances RANKL-dependent osteoclastogenesis. J Bone Miner Res 24(1):78–86PubMedCrossRefGoogle Scholar
  70. Rigolin GM, Porta MD et al (2004) Flow cytometric detection of accelerated telomere shortening in myelodysplastic syndromes: correlations with aetiological and clinical–biological findings. Eur J Haematol 73(5):351–358PubMedCrossRefGoogle Scholar
  71. Rossi DJ, Bryder D et al (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102(26):9194–9199PubMedCrossRefGoogle Scholar
  72. Rossi DJ, Jamieson CH et al (2008) Stems cells and the pathways to aging and cancer. Cell 132(4):681–696PubMedCrossRefGoogle Scholar
  73. Rudolph KL, Chang S et al (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96(5):701–712PubMedCrossRefGoogle Scholar
  74. Rumble B, Retallack R et al (1989) Amyloid A4 protein and its precursor in Down’s syndrome and Alzheimer’s disease. N Engl J Med 320(22):1446–1452PubMedCrossRefGoogle Scholar
  75. Ruzankina Y, Pinzon-Guzman C et al (2007) Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1(1):113–126PubMedCrossRefGoogle Scholar
  76. Sahin E, Depinho RA (2010) Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464(7288):520–528PubMedCrossRefGoogle Scholar
  77. Samper E, Flores JM et al (2001) Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc−/− mice with short telomeres. EMBO Rep 2(9):800–807PubMedCrossRefGoogle Scholar
  78. Samper E, Fernandez P et al (2002) Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells. Blood 99(8):2767–2775PubMedCrossRefGoogle Scholar
  79. Sanguinetti G, Noirel J et al (2008) MMG: a probabilistic tool to identify submodules of metabolic pathways. Bioinformatics 24(8):1078–1084PubMedCrossRefGoogle Scholar
  80. Sato N, Meijer L et al (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10(1):55–63PubMedCrossRefGoogle Scholar
  81. Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312(5776):1059–1063PubMedCrossRefGoogle Scholar
  82. Scaffidi P, Misteli T (2008) Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 10(4):452–459PubMedCrossRefGoogle Scholar
  83. Schonland SO, Lopez C et al (2003) Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. Proc Natl Acad Sci U S A 100(23):13471–13476PubMedCrossRefGoogle Scholar
  84. Sharpless NE, DePinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8(9):703–713PubMedCrossRefGoogle Scholar
  85. Sieburg HB, Cho RH et al (2006) The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 107(6):2311–2316PubMedCrossRefGoogle Scholar
  86. Siegl-Cachedenier I, Flores I et al (2007) Telomerase reverses epidermal hair follicle stem cell defects and loss of long-term survival associated with critically short telomeres. J Cell Biol 179(2):277–290PubMedCrossRefGoogle Scholar
  87. Song Z, Wang J et al (2010) Alterations of the systemic environment are the primary cause of impaired B and T lymphopoiesis in telomere-dysfunctional mice. Blood 115(8):1481–1489PubMedCrossRefGoogle Scholar
  88. Strehler BL, Mildvan AS (1960) General theory of mortality and aging. Science 132:14–21PubMedCrossRefGoogle Scholar
  89. Testa NG, Hendry JH et al (1985) Long-term bone marrow damage in experimental systems and in patients after radiation or chemotherapy. Anticancer Res 5(1):101–110PubMedGoogle Scholar
  90. Tomas-Loba A, Flores I et al (2008) Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 135(4):609–622PubMedCrossRefGoogle Scholar
  91. Trowbridge JJ, Xenocostas A et al (2006) Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat Med 12(1):89–98PubMedCrossRefGoogle Scholar
  92. Vaziri H, Dragowska W et al (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci U S A 91(21):9857–9860PubMedCrossRefGoogle Scholar
  93. Vulliamy TJ, Dokal I (2008) Dyskeratosis congenita: the diverse clinical presentation of mutations in the telomerase complex. Biochimie 90(1):122–130PubMedCrossRefGoogle Scholar
  94. Wang Y, Schulte BA et al (2006) Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 107(1):358–366PubMedCrossRefGoogle Scholar
  95. Waterstrat A, Oakley E, Miller A, Swierski C, Liang Y, Van Zant G (2008) Mechanisms of stem cell aging. In: Rudolph KL (ed) Telomeres and telomerase in ageing, disease, and cancer, Springer, pp 111–140Google Scholar
  96. Wong KK, Maser RS et al (2003) Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 421(6923):643–648PubMedCrossRefGoogle Scholar
  97. Xu Y, Ashley T et al (1996) Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 10(19):2411–2422PubMedCrossRefGoogle Scholar
  98. Zhao C, Deng W et al (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Mellanby Centre for Bone Research, Department of Human MetabolismUniversity of SheffieldSheffieldEngland, UK
  2. 2.Institute for Adaptive and Neural ComputationUniversity of EdinburghEdinburghScotland, UK
  3. 3.Institute of Cancer Sciences, CRUK Beatson LaboratoriesUniversity of GlasgowGlasgowScotland, UK

Personalised recommendations