Advertisement

Biogerontology

, 12:455 | Cite as

Zinc, metallothioneins and immunosenescence: effect of zinc supply as nutrigenomic approach

  • Eugenio Mocchegiani
  • Laura Costarelli
  • Robertina Giacconi
  • Francesco Piacenza
  • Andrea Basso
  • Marco Malavolta
Research Article

Abstract

Ageing is an inevitable biological process associated with gradual and spontaneous biochemical and physiological changes and increased susceptibility to diseases. Nutritional factor, zinc, known to be involved in improving immunity, may remodel some of the age-associated changes, leading to a healthy ageing. “In Vitro” studies involving human lymphocytes exposed to endotoxins, and “in vivo” studies comparing old and young mice fed with low dietary zinc suggest that zinc is important for both innate and adaptive immune efficiency, and more optimal inflammatory/immune response. The intracellular zinc homeostasis is mainly regulated by Metallothioneins (MT), via ion release through the reduction of thiol groups in MT molecule. These processes are crucial because mediating the zinc signalling within the immune cells assigning to zinc a role of “second messenger”. Zinc homeostasis is altered in ageing partly due to higher expression levels of MT, leading to an increased sequestration of zinc, resulting in less availability of free intracellular zinc. Improvement of immune functions and stress response systems occurs in elderly after physiological zinc supplementation. The main reason behind these effects seems to be related to a like “hormetic” response induced by zinc. However, the choice of old subjects for zinc supplementation has to be performed in relationship to the specific genetic background of MT and pro-inflammatory cytokine (IL-6) because the latter is involved both in MT gene expression and in intracellular zinc homeostasis. Old subjects carrying GG genotypes (termed C− carriers) in IL-6 −174G/C locus display increased IL-6 production, low intracellular zinc ion availability, impaired innate immune response and enhanced MT. By contrast, old subjects carrying GC and CC genotypes (termed C+ carriers) in the same IL-6 −174 locus displayed satisfactory intracellular zinc and innate immune response. Moreover, male carriers of C+ allele are more prone to reach centenarian age than C− ones. Therefore, old C− subjects are likely to benefit more from zinc supplementation restoring NK cell cytotoxicity and improving the zinc status. Plasma zinc deficiency and the altered immune response is more evident when the genetic variations of IL-6 polymorphism are associated with the genetic variations of MT1A in position +647, suggesting that the genetic variations of IL-6 and MT1A are very useful tools for the identification of old people who effectively need zinc supplementation.

Keywords

Zinc supplementation Metallothioneins IL-6 Inflammatory/immune response Nutrigenomic approach Longevity Ageing 

Notes

Acknowledgments

Supported by INRCA, CARILORETO, CARIVERONA and European Project ZINCAGE: n. FOOD-CT-506850, Coordinator: Dr. Eugenio Mocchegiani.

References

  1. Abo T, Kawamura T, Watanabe H (2000) Physiological responses of extrathymic T cells in the liver. Immunol Rev 174:135–149PubMedCrossRefGoogle Scholar
  2. Ames BN (2006) Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. Proc Natl Acad Sci USA 103:17589–17594PubMedCrossRefGoogle Scholar
  3. Anantharaju A, Feller A, Chedid A (2002) Aging liver. Gerontology 48:343–353PubMedCrossRefGoogle Scholar
  4. Bahadorani S, Mukai S, Egli D, Hilliker AJ (2010) Overexpression of metalresponsive transcription factor (MTF-1) in Drosophila melanogaster ameliorates life-span reductions associated with oxidative stress and metal toxicity. Neurobiol Aging 31:1215–1226PubMedCrossRefGoogle Scholar
  5. Barsyte D, Lovejoy DA, Lithgow GJ (2001) Longevity and heavy metal resistance in daf-2 and age-1 long lived mutants of Caenorhabditis elegans. FASEB J 15:627–634PubMedCrossRefGoogle Scholar
  6. Bauer JH, Helfand SL (2006) New tricks of an old molecule: lifespan regulation by p53. Aging Cell 5:437–440PubMedCrossRefGoogle Scholar
  7. Bauer J, Ganter U, Abel J, Strauss S, Jonas U, Weiss R, Gebicke-Haerter P, Volk B, Berger M (1993) Effects of interleukin-1 and interleukin-6 on metallothionein and amyloid precursor protein expression in human neuroblastoma cells. Evidence that interleukin-6 possibly acts via a receptor different from the 80-kDa interleukin-6 receptor. J Neuroimmunol 45:163–173PubMedCrossRefGoogle Scholar
  8. Bui LM, Dressendorfer RH, Keen CL, Summary JJ, Dubick MA (1994) Zinc status and interleukin-1 beta-induced alterations in mineral metabolism in rats. Proc Soc Exp Biol Med 206:438–444PubMedGoogle Scholar
  9. Cai L, Satoh M, Tohyama C, Cherian MG (1999) Metallothionein in radiation exposure: its induction and protective role. Toxicology 132:85–98PubMedCrossRefGoogle Scholar
  10. Chimienti F, Seve M, Richard S, Mathieu J, Favier A (2001) Role of cellular zinc in programmed cell death: temporal relationship between zinc depletion, activation of caspases, and cleavage of Sp family transcription factors. Biochem Pharmacol 62:51–62PubMedCrossRefGoogle Scholar
  11. Cipriano C, Malavolta M, Costarelli L, Giacconi R, Muti E, Gasparini N, Cardelli M, Monti D, Mariani E, Mocchegiani E (2006) Polymorphisms in MT1a gene with longevity in Italian Central female population. Biogerontology 7:357–365PubMedCrossRefGoogle Scholar
  12. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089PubMedCrossRefGoogle Scholar
  13. Dardenne M, Boukaiba N, Gagnerault MC, Homo-Delarche F, Chappuis P, Lemonnier D, Savino W (1993) Restoration of the thymus in aging mice by in vivo zinc supplementation. Clin Immunol Immunopathol 66:127–135PubMedCrossRefGoogle Scholar
  14. Driessen C, Hirv K, Rink L, Kirchner H (1994) Induction of cytokines by zinc ions in human peripheral blood mononuclear cells and separated monocytes. Lymphokine Cytokine Res 13:15–20PubMedGoogle Scholar
  15. Ebadi M, Swanson S (1988) The status of zinc, copper, and metallothionein in cancer patients. Prog Clin Biol Res 259:161–175PubMedGoogle Scholar
  16. Failla ML (2003) Trace elements and host defence: recent advances and continuing challenges. J Nutr 133(Suppl. 1):1443S–1447SPubMedGoogle Scholar
  17. Feng W, Cai J, Pierce WM, Franklin RB, Maret W, Benz FW, Kang YJ (2005) Metallothionein transfers zinc to mitochondrial aconitase through a direct interaction in mouse hearts. Biochem Biophys Res Commun 332:853–858PubMedCrossRefGoogle Scholar
  18. Feng W, Benz FW, Cai J, Pierce WM, Kang YJ (2006) Metallothionein disulfides are present in metallothionein-overexpressing transgenic mouse heart and increase under conditions of oxidative stress. J Biol Chem 281:681–687PubMedCrossRefGoogle Scholar
  19. Fraker PJ (2005) Roles for cell death in zinc deficiency. J Nutr 135:359–362PubMedGoogle Scholar
  20. Goode HF, Kelleher J, Walker BE (1989) Zinc concentrations in pure populations of peripheral blood neutrophils, lymphocytes and monocytes. Ann Clin Biochem 26:85–95Google Scholar
  21. Haase H, Rink L (2009) The immune system and the impact of zinc during aging. Immun Ageing 6:9–17PubMedCrossRefGoogle Scholar
  22. Habeebu SS, Liu J, Liu Y, Klaassen CD (2000) Metallothionein-null mice are more susceptible than wild-type mice to chronic CdCl(2)-induced bone injury. Toxicol Sci 56:211–219PubMedCrossRefGoogle Scholar
  23. Hernández J, Molinero A, Campbell IL, Hidalgo J (1997) Transgenic expression of interleukin 6 in the central nervous system regulates brain metallothionein-I and -III expression in mice. Brain Res Mol Brain Res 48:125–131PubMedCrossRefGoogle Scholar
  24. Hujanen ES, Seppa ST, Virtanen K (1995) Polymorphonuclear leukocyte chemotaxis induced by zinc, copper and nickel in vitro. Biochim Biophys Acta 1245:145–152PubMedGoogle Scholar
  25. Ibs KH, Rink L (2003) Zinc-altered immune function. J Nutr 133(Suppl 1):1452S–1456SPubMedGoogle Scholar
  26. Iwata T, Incefy GS, Tanaka T, Fernandes G, Menendez-Botet CJ, Pih K, Good RA (1979) Circulating thymic hormone levels in zinc deficiency. Cell Immunol 47:100–105PubMedCrossRefGoogle Scholar
  27. Kagi JH, Schaffer A (1998) Biochemistry of metallothionein. Biochemistry 127:8509–8515Google Scholar
  28. Kant AK (2000) Consumption of energy-dense, nutrient-poor foods by adult Americans: nutritional, health implications. The third National Health, Nutrition Examination Survey,1988–1994. Am J Clin Nutr 72:929–936PubMedGoogle Scholar
  29. Kelly EJ, Quaife CJ, Froelick GJ, Palmiter RD (1996) Metallothionein I and II protect against zinc deficiency and zinc toxicity in mice. J Nutr 126:1782–1790PubMedGoogle Scholar
  30. Kindermann B, Döring F, Fuchs D, Pfaffl MW, Daniel H (2005) Effects of increased cellular zinc levels on gene and protein expression in HT-29 cells. Biometals 18:243–253PubMedCrossRefGoogle Scholar
  31. Kondo Y, Rusnak JM, Hoyt DG, Settineri CE, Pitt BR, Lazo JS (1997) Enhanced apoptosis in metallothionein null cells. Mol Pharmacol 52:195–201PubMedGoogle Scholar
  32. Kroncke KD, Klotz LO, Suschek CV, Sies H (2002) Comparing nitrosative versus oxidative stress toward zinc finger-dependent transcription. Unique role for NO. J Biol Chem 277:13294–13301PubMedCrossRefGoogle Scholar
  33. Kuppusamy UR, Dharmani M, Kanthimathi MS, Indran M (2005) Antioxidant enzyme activities of human peripheral blood mononuclear cells exposed to trace elements. Biol Trace Elem Res 106:29–40PubMedCrossRefGoogle Scholar
  34. Lamore SD, Wondrak GT (2011) Zinc pyrithione impairs zinc homeostasis and upregulates stress response gene expression in reconstructed human epidermis. Biometals. doi: 10.1007/s10534-011-9441-6
  35. Lee WW, Cui D, Czesnikiewicz-Guzik M, Vencio RZ, Shmulevich I, Aderem A, Weyand CM, Goronzy JJ (2008) Age-dependent signature of metallothionein expression in primary CD4 T cell responses is due to sustained zinc signaling. Rejuvenation Res 11:1001–1011PubMedCrossRefGoogle Scholar
  36. Lesourd B (2006) Nutritional factors and immunological ageing. Proc Nutr Soc 65:319–325PubMedCrossRefGoogle Scholar
  37. Liu J, Atamna H, Kuratsune H, Ames BN (2002) Delaying brain mitochondrial decay and aging with mitochondrial antioxidants and metabolites. Ann NY Acad Sci 959:133–166PubMedCrossRefGoogle Scholar
  38. Liuzzi JP, Cousins RJ (2004) Mammalian zinc transporters. Annu Rev Nutr 24:151–172PubMedCrossRefGoogle Scholar
  39. Liuzzi JP, Lichten LA, Rivera S, Blanchard RK, Aydemir TB, Knutson MD, Ganz T, Cousins RJ (2005) Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci USA 102:6843–6848PubMedCrossRefGoogle Scholar
  40. Magda D, Lecane P, Wang Z, Hu W, Thiemann P, Ma X, Dranchak PK, Wang X, Lynch V, Wei W, Csokai V, Hacia JG, Sessler JL (2008) Synthesis and anticancer properties of water-soluble zinc ionophores. Cancer Res 68:5318–5325PubMedCrossRefGoogle Scholar
  41. Malavolta M, Costarelli L, Giacconi R, Muti E, Bernardini G, Tesei S, Cipriano C, Mocchegiani E (2006) Single and three-color flow cytometry assay for intracellular zinc ion availability in human lymphocytes with Zinpyr-1 and double immunofluorescence: relationship with metallothioneins. Cytometry A 69:1043–1053PubMedGoogle Scholar
  42. Malavolta M, Cipriano C, Costarelli L, Giacconi R, Tesei S, Muti E, Piacenza F, Pierpaoli S, Larbi A, Pawelec G, Dedoussis G, Herbein G, Monti D, Jajte J, Rink L, Mocchegiani E (2008) Metallothionein downregulation in very old age: a phenomenon associated with cellular senescence? Rejuvenation Res 11:455–459PubMedCrossRefGoogle Scholar
  43. Mann JJ, Fraker PJ (2005) Zinc pyrithione induces apoptosis and increases expression of Bim. Apoptosis 10:369–379PubMedCrossRefGoogle Scholar
  44. Maret W (2003) Cellular zinc and redox states converge in the metallothionein/thionein pair. J Nutr 133:S1460–S1462Google Scholar
  45. Maret W, Vallee BL (1998) Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci USA 95:3478–3482PubMedCrossRefGoogle Scholar
  46. Mariani E, Neri S, Cattini L, Mocchegiani E, Malavolta M, Dedoussis GV, Kanoni S, Rink L, Jajte J, Facchini A (2008) Effect of zinc supplementation on plasma IL-6 and MCP-1 production and NK cell function in healthy elderly: Interactive influence of +647 MT1a and −174 IL-6 polymorphic alleles. Exp Gerontol 43:462–471PubMedCrossRefGoogle Scholar
  47. Mattson MP (2008) Hormesis and disease resistance: activation of cellular stress response pathways. Hum Exp Toxicol 27:155–162PubMedCrossRefGoogle Scholar
  48. Meydani M (2001) Nutrition interventions in aging and age-associated disease. Ann NY Acad Sci 928:226–235PubMedCrossRefGoogle Scholar
  49. Mocchegiani E, Malavolta M (2008) Zinc-gene interaction related to inflammatory/immune response in ageing. Genes Nutr 3:61–75PubMedCrossRefGoogle Scholar
  50. Mocchegiani E, Santarelli L, Muzzioli M, Muzzioli M, Fabris N (1995) Reversibility of the thymic involution and of age-related peripheral immune dysfunctions by zinc supplementation in old mice. Int J Immunopharmacol 17:703–718PubMedCrossRefGoogle Scholar
  51. Mocchegiani E, Muzzioli M, Cipriano C, Giacconi R (1998) Zinc, T-cell pathways, aging: role of metallothioneins. Mech Ageing Dev 106:183–204PubMedCrossRefGoogle Scholar
  52. Mocchegiani E, Muzzioli M, Giacconi R (2000a) Zinc and immunoresistance to infection in aging: new biological tools. Trends Pharmacol Sci 21:205–208PubMedCrossRefGoogle Scholar
  53. Mocchegiani E, Muzzioli M, Giacconi R (2000b) Zinc, metallothioneins, immune responses, survival and ageing. Biogerontology 1:133–143PubMedCrossRefGoogle Scholar
  54. Mocchegiani E, Giacconi R, Cipriano C, Gasparini N, Orlando F, Stecconi R, Muzzioli M, Isani G, Carpenè E (2002a) Metallothioneins (I+II) and thyroid-thymus axis efficiency in old mice: role of corticosterone and zinc supply. Mech Ageing Dev 123:675–694PubMedCrossRefGoogle Scholar
  55. Mocchegiani E, Giacconi R, Cipriano C, Muzzioli M, Gasparini N, Moresi R, Stecconi R, Suzuki H, Cavalieri E, Mariani E (2002b) MTmRNA gene expression, via IL-6 and glucocorticoids, as potential genetic marker of immunosenescence: lessons from very old mice and humans. Exp Gerontol 37:349–357PubMedCrossRefGoogle Scholar
  56. Mocchegiani E, Giacconi R, Cipriano C, Gasparini N, Bernardini G, Malavolta M, Menegazzi M, Cavalieri E, Muzzioli M, Ciampa AR, Suzuki H (2004) The variation during the circadian cycle of liver CD1d-unrestricted NK1.1+TCRγδ+ cells lead to successful ageing. Role of metallothionein/IL-6/gp130/PARP-1 interplay in very old mice. Exp Gerontol 39:775–788PubMedCrossRefGoogle Scholar
  57. Mocchegiani E, Giacconi R, Cipriano C, Costarelli L, Muti E, Tesei S, Giuli C, Papa R, Marcellini F, Mariani E, Rink L, Herbein G, Varin A, Fulop T, Monti D, Jajte J, Dedoussis G, Gonos ES, Trougakos IP, Malavolta M (2007a) Zinc, metallothioneins, and longevity effect of zinc supplementation: zincage study. Ann NY Acad Sci 1119:129–146PubMedCrossRefGoogle Scholar
  58. Mocchegiani E, Giacconi R, Muti E, Cipriano C, Costarelli L, Tesei S, Gasparini N, Malavolta M (2007b) Zinc-bound metallothioneins and immune plasticity: lessons from very old mice and humans. Immun Ageing 4:7–12PubMedCrossRefGoogle Scholar
  59. Mocchegiani E, Giacconi R, Costarelli L, Muti E, Cipriano C, Tesei S, Pierpaoli S, Giuli C, Papa R, Marcellini F, Gasparini N, Pierandrei R, Piacenza F, Mariani E, Monti D, Dedoussis G, Kanoni S, Herbein G, Fulop T, Rink L, Jajte J, Malavolta M (2008) Zinc deficiency and IL-6 −174G/C polymorphism in old people from different European countries: Effect of zinc supplementation. ZINCAGE study. Exp Gerontol 43:433–444PubMedCrossRefGoogle Scholar
  60. Mocchegiani E, Malavolta M, Costarelli L, Giacconi R, Cipriano C, Piacenza F, Tesei S, Basso A, Pierpaoli S, Lattanzio F (2010) Zinc, metallothioneins and immunosenescence. Proc Nutr Soc 69:290–299PubMedCrossRefGoogle Scholar
  61. Moroni F, Di Paolo ML, Rigo A, Cipriano C, Giacconi R, Recchioni R, Marcheselli F, Malavolta M, Mocchegiani E (2005) Interrelationship among neutrophil efficiency, inflammation, antioxidant activity and zinc pool in very old age. Biogerontology 6:271–281PubMedCrossRefGoogle Scholar
  62. Ostan R, Alberti S, Bucci L, Salvioli S, Pasi S, Cevenini E, Capri M, Di Iorio A, Ginaldi L, De Martinis M, Franceschi C, Monti D (2006) Effect of zinc ions on apoptosis in PBMCs from healthy aged subjects. Biogerontology 7:437–447PubMedCrossRefGoogle Scholar
  63. Paolisso G, Barbieri M, Bonafè M, Franceschi C (2000) Metabolic age modelling: the lesson from centenarians. Eur J Clin Invest 10:888–894CrossRefGoogle Scholar
  64. Provinciali M, Di Stefano G, Stronati S (1998) Flow cytometric analysis of CD3/TCR complex, zinc, and glucocorticoid-mediated regulation of apoptosis and cell cycle distribution in thymocytes from old mice. Cytometry 32:1–8PubMedCrossRefGoogle Scholar
  65. Putics A, Vödrös D, Malavolta M, Mocchegiani E, Csermely P, Soti C (2008) Zinc supplementation boosts the stress response in the elderly: Hsp70 status is linked to zinc availability in peripheral lymphocytes. Exp Gerontol 43:452–461PubMedCrossRefGoogle Scholar
  66. Rattan SI, Demirovic D (2009) Hormesis can and does work in humans. Dose Response 8:58–63PubMedCrossRefGoogle Scholar
  67. Rink L, Haase H (2007) Zinc homeostasis and immunity. Trends Immunol 28:1–4PubMedCrossRefGoogle Scholar
  68. Sato M, Kondoh M (2002) Recent studies on metallothionein: protection against toxicity of heavy metals and oxygen free radicals. Tohoku J Exp Med 196:9–22PubMedCrossRefGoogle Scholar
  69. Satoh M, Nishimura N, Kanayama Y, Naganuma A, Suzuki T, Tohyama C (1997) Enhanced renal toxicity by inorganic mercury in metallothionein-null mice. J Pharmacol Exp Ther 283:1529–1533PubMedGoogle Scholar
  70. Schroeder JJ, Cousins RJ (1990) Interleukin 6 regulates metallothionein gene expression and zinc metabolism in hepatocyte monolayer cultures. Proc Natl Acad Sci USA 87:3137–3141PubMedCrossRefGoogle Scholar
  71. Shenkin A (2006) Micronutrients in health and disease. Postgrad Med J 82:559–567PubMedCrossRefGoogle Scholar
  72. Spahl DU, Berendji-Grun D, Suschek CV, Kolb-Bachofen V, Kröncke KD (2003) Regulation of zinc homeostasis by inducible NO synthase-derived NO: nuclear metallothionein translocation and intranuclear Zn2+ release. Proc Natl Acad Sci USA 100:13952–13957PubMedCrossRefGoogle Scholar
  73. Swindell WR (2010) Metallothionein and the biology of aging. Ageing Res Rev 10:132–145PubMedCrossRefGoogle Scholar
  74. Truong-Tran AQ, Carter J, Ruffin RE, Zalewski PD (2001) The role of zinc in caspase activation and apoptotic cell death. Biometals 14:315–330PubMedCrossRefGoogle Scholar
  75. Tucker KL, Buranapin S (2001) Nutrition and aging in developing countries. J Nutr 9:2417S–2423SGoogle Scholar
  76. Turnlund JR, Durkin N, Costa F, Margen S (1986) Stable isotope studies of zinc absorption and retention in young and elderly men. J Nutr 116:1239–1247PubMedGoogle Scholar
  77. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118PubMedCrossRefGoogle Scholar
  78. West AK, Stallings R, Hildebrand CE, Chiu R, Karin M, Richards RI (1990) Human metallothionein genes: structure of the functional locus at 16q13. Genomics 8:513–518PubMedCrossRefGoogle Scholar
  79. Williams PD, Day T (2003) Antagonistic pleiotropy, mortality source interactions, and the evolutionary theory of senescence. Evol Int J Org Evol 57:1478–1488Google Scholar
  80. Wong CP, Song Y, Elias VD, Magnusson KR, Ho E (2009) Zinc supplementation increases zinc status and thymopoiesis in aged mice. J Nutr 139:1393–1397PubMedCrossRefGoogle Scholar
  81. Yang X, Doser TA, Fang CX, Nunn JM, Janardhanan R, Zhu M, Sreejayan N, Quinn MT, Ren J (2006) Metallothionein prolongs survival and antagonizes senescence associated cardiomyocyte diastolic dysfunction: role of oxidative stress. FASEB J 20:1024–1026PubMedCrossRefGoogle Scholar
  82. Youn J, Lynes MA (1999) Metallothionein-induced suppression of cytotoxic T lymphocyte function: an important immunoregulatory control. Toxicol Sci 52:199–208PubMedCrossRefGoogle Scholar
  83. Yu CW, Chen JH, Lin LY (1997) Metal-induced metallothionein gene expression can be inactivated by protein kinase C inhibitor. FEBS Lett 420:69–73PubMedCrossRefGoogle Scholar
  84. Zangger K, Oz G, Haslinger E, Kunert O, Armitage IM (2001) Nitric oxide selectively releases metals from the amino-terminal domain of metallothioneins: potential role at inflammatory sites. FASEB J 15:1303–1305PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Eugenio Mocchegiani
    • 1
  • Laura Costarelli
    • 1
  • Robertina Giacconi
    • 1
  • Francesco Piacenza
    • 1
  • Andrea Basso
    • 1
  • Marco Malavolta
    • 1
  1. 1.Nutrition and Ageing Centre, Italian National Research Centres on Ageing (INRCA)AnconaItaly

Personalised recommendations