Advertisement

Biogerontology

, Volume 12, Issue 5, pp 377–386 | Cite as

The role of autophagy in genetic pathways influencing ageing

  • Maria Markaki
  • Nektarios TavernarakisEmail author
Review Article

Abstract

Autophagy is a conserved cellular degradation pathway for the breakdown of cytosolic macromolecules and organelles. Constitutive autophagy has a housekeeping role and is essential for survival, development and metabolic regulation. Autophagy is also responsive to stress and can degrade damaged proteins and organelles, oxidized lipids and intracellular pathogens. Defects in the autophagic degradation system are linked to disease pathogenesis and ageing. Different signalling pathways converge on autophagy to regulate lifespan in diverse organisms. We discuss recent findings that provide insight into the cross-talk between this critical regulator of metabolic homeostasis and molecular mechanisms that promote longevity.

Keywords

Beclin Caenorhabditis elegans Caloric restriction Drosophila Homeodynamics Homeostasis Insulin p53 Rapamycin Resveratrol Spermidine TOR Tunicamycin 

Abbreviations

AMPK

AMP-activated protein kinase

Atg

Autophagy-related genes

CaN

Calcineurin

FOXO

Forkhead transcription factor

HIF

Hypoxia inducible factor

Insulin/IGF-1 pathway

Insulin/Insulin-like Growth Factor-1

JNK1

c-Jun N-terminal kinase

LAMP-2A

Lysosome-associated membrane protein-2

MAP1LC3

Microtubule-asociated protein 1 light chain 3

NAD+

Nicotinamide adenine dinucleotide

PNC-1

Pyrazinamidase/Nicotinamidase

PtdIns3K

Phosphatidylinositol-3 kinase

ROS

Reactive oxygen species

TOR

Target of rapamycin

Notes

Acknowledgments

The authors wish to acknowledge funding from EMBO, the European Research Council (ERC) and the European Commission Framework Programmes.

References

  1. Alvers AL, Wood MS, Hu D, Kaywell AC, Dunn WA Jr, Aris JP (2009) Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy 5:847–849PubMedGoogle Scholar
  2. Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18:3004–3009PubMedCrossRefGoogle Scholar
  3. Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466:68–76PubMedCrossRefGoogle Scholar
  4. Berry DL, Baehrecke EH (2007) Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131:1137–1148PubMedCrossRefGoogle Scholar
  5. Biteau B, Karpac J, Hwangbo D, Jasper, H (2010) Regulation of Drosophila lifespan by JNK signaling. Exp Gerontol. doi: 10.1016/exger.2010.11.003
  6. Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L (2010) Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 11:35–46PubMedCrossRefGoogle Scholar
  7. Cuervo AM, Dice JF (2000) Age-related decline in chaperone-mediated autophagy. J Biol Chem 275:31505–31513PubMedCrossRefGoogle Scholar
  8. Cuervo AM, Bergamini E, Brunk UT, Droge W, Ffrench M, Terman A (2005) Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1:131–140PubMedCrossRefGoogle Scholar
  9. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y et al (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:51–64PubMedCrossRefGoogle Scholar
  10. Diskin T, Tal-Or P, Erlich S, Mizrachy L, Alexandrovich A, Shohami E, Pinkas-Kramarski R (2005) Closed head injury induces upregulation of Beclin 1 at the cortical site of injury. J Neurotrauma 22:750–762PubMedCrossRefGoogle Scholar
  11. Dwivedi M, Song HO, Ahnn J (2009) Autophagy genes mediate the effect of calcineurin on life span in C. elegans. Autophagy 5:604–607PubMedCrossRefGoogle Scholar
  12. Efeyan A, Sabatini DM (2010) mTOR and cancer: many loops in one pathway. Curr Opin Cell Biol 22:169–176PubMedCrossRefGoogle Scholar
  13. Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L et al (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1314PubMedCrossRefGoogle Scholar
  14. Erlich S, Shohami E, Pinkas-Kramarski R (2006) Neurodegeneration induces upregulation of Beclin 1. Autophagy 2:49–51PubMedGoogle Scholar
  15. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span—from yeast to humans. Science 328:321–326PubMedCrossRefGoogle Scholar
  16. Hands SL, Proud CG, Wyttenbach A (2009) mTOR’s role in ageing: protein synthesis or autophagy? Aging (Albany NY) 1:586–597Google Scholar
  17. Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4:e24PubMedCrossRefGoogle Scholar
  18. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889PubMedCrossRefGoogle Scholar
  19. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395PubMedGoogle Scholar
  20. Hars ES, Qi H, Ryazanov AG, Jin S, Cai L, Hu C, Liu LF (2007) Autophagy regulates ageing in C. elegans. Autophagy 3:93–95PubMedGoogle Scholar
  21. Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187PubMedCrossRefGoogle Scholar
  22. Huang WP, Klionsky DJ (2002) Autophagy in yeast: a review of the molecular machinery. Cell Struct Funct 27:409–420PubMedCrossRefGoogle Scholar
  23. Jia K, Levine B (2010) Autophagy and longevity: lessons from C. elegans. Adv Exp Med Biol 694:47–60PubMedCrossRefGoogle Scholar
  24. Jia K, Chen D, Riddle DL (2004) The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131:3897–3906PubMedCrossRefGoogle Scholar
  25. Jia K, Hart AC, Levine B (2007) Autophagy genes protect against disease caused by polyglutamine expansion proteins in Caenorhabditis elegans. Autophagy 3:21–25PubMedGoogle Scholar
  26. Jia K, Thomas C, Akbar M, Sun Q, Adams-Huet B, Gilpin C, Levine B (2009) Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc Natl Acad Sci USA 106:14564–14569PubMedCrossRefGoogle Scholar
  27. Johnson TE (2008) Caenorhabditis elegans 2007: the premier model for the study of aging. Exp Gerontol 43:1–4PubMedCrossRefGoogle Scholar
  28. Juhasz G, Csikos G, Sinka R, Erdelyi M, Sass M (2003) The Drosophila homolog of Aut1 is essential for autophagy and development. FEBS Lett 543:154–158PubMedCrossRefGoogle Scholar
  29. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728PubMedCrossRefGoogle Scholar
  30. Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580PubMedCrossRefGoogle Scholar
  31. Kaeberlein M, Powers RW III, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:1193–1196PubMedCrossRefGoogle Scholar
  32. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14:885–890PubMedCrossRefGoogle Scholar
  33. Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460PubMedCrossRefGoogle Scholar
  34. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512PubMedCrossRefGoogle Scholar
  35. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y et al (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434PubMedCrossRefGoogle Scholar
  36. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884PubMedCrossRefGoogle Scholar
  37. Komatsu M, Wang QJ, Holstein GR, Friedrich VL Jr, Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z (2007) Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci USA 104:14489–14494PubMedCrossRefGoogle Scholar
  38. Koubova J, Guarente L (2003) How does calorie restriction work? Genes Dev 17:313–321PubMedCrossRefGoogle Scholar
  39. Kourtis N, Tavernarakis N (2009) Autophagy and cell death in model organisms. Cell Death Differ 16:21–30PubMedCrossRefGoogle Scholar
  40. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477PubMedCrossRefGoogle Scholar
  41. Libert S, Zwiener J, Chu X, Vanvoorhies W, Roman G, Pletcher SD (2007) Regulation of Drosophila life span by olfaction and food-derived odors. Science 315:1133–1137PubMedCrossRefGoogle Scholar
  42. Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126–2128PubMedCrossRefGoogle Scholar
  43. Madeo F, Tavernarakis N, Kroemer G (2010) Can autophagy promote longevity? Nat Cell Biol 12:842–846PubMedCrossRefGoogle Scholar
  44. Mair W, Dillin A (2008) Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem 77:727–754PubMedCrossRefGoogle Scholar
  45. McPhee CK, Baehrecke EH (2009) Autophagy in Drosophila melanogaster. Biochim Biophys Acta 1793:1452–1460PubMedCrossRefGoogle Scholar
  46. Megalou EV, Tavernarakis N (2009) Autophagy in Caenorhabditis elegans. Biochim Biophys Acta 1793:1444–1451PubMedCrossRefGoogle Scholar
  47. Melendez A, Neufeld TP (2008) The cell biology of autophagy in metazoans: a developing story. Development 135:2347–2360PubMedCrossRefGoogle Scholar
  48. Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391PubMedCrossRefGoogle Scholar
  49. Mizushima N (2005) The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ 12(Suppl 2):1535–1541PubMedCrossRefGoogle Scholar
  50. Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12:823–830PubMedCrossRefGoogle Scholar
  51. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075PubMedCrossRefGoogle Scholar
  52. Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Criollo A, Galluzzi L, Malik SA, Vitale I, Michaud M et al (2010a). Caloric restriction and resveratrol promote longevity through the Sirtuin-1- dependent induction of autophagy. Cell Death Dis 1:e10. doi: 10.1038/cddis.2009.8
  53. Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I et al (2010b) The life span-prolonging effect of sirtuin-1 is mediated by autophagy. Autophagy 6:186–188PubMedCrossRefGoogle Scholar
  54. Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M et al (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13:619–624PubMedCrossRefGoogle Scholar
  55. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E et al (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168PubMedCrossRefGoogle Scholar
  56. Poon PC, Kuo TH, Linford NJ, Roman G, Pletcher SD (2010) Carbon dioxide sensing modulates lifespan and physiology in Drosophila. PLoS Biol 8:e1000356PubMedCrossRefGoogle Scholar
  57. Powers RW III, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20:174–184PubMedCrossRefGoogle Scholar
  58. Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330:1344–1348PubMedCrossRefGoogle Scholar
  59. Samara C, Tavernarakis N (2008) Autophagy and cell death in Caenorhabditis elegans. Curr Pharm Des 14:97–115PubMedCrossRefGoogle Scholar
  60. Samara C, Syntichaki P, Tavernarakis N (2008) Autophagy is required for necrotic cell death in Caenorhabditis elegans. Cell Death Differ 15:105–112PubMedCrossRefGoogle Scholar
  61. Scott RC, Juhasz G, Neufeld TP (2007) Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17:1–11PubMedCrossRefGoogle Scholar
  62. Smith ED, Kaeberlein TL, Lydum BT, Sager J, Welton KL, Kennedy BK, Kaeberlein M (2008) Age- and calorie-independent life span extension from dietary restriction by bacterial deprivation in Caenorhabditis elegans. BMC Dev Biol 8:49PubMedCrossRefGoogle Scholar
  63. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–110PubMedCrossRefGoogle Scholar
  64. Tavernarakis N (2008) Ageing and the regulation of protein synthesis: a balancing act? Trends Cell Biol 18:228–235PubMedCrossRefGoogle Scholar
  65. Tavernarakis N, Pasparaki A, Tasdemir E, Maiuri MC, Kroemer G (2008) The effects of p53 on whole organism longevity are mediated by autophagy. Autophagy 4:870–873PubMedGoogle Scholar
  66. Tian Y, Li Z, Hu W, Ren H, Tian E, Zhao Y, Lu Q, Huang X, Yang P, Li X et al (2010) C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141:1042–1055PubMedCrossRefGoogle Scholar
  67. Toth ML, Sigmond T, Borsos E, Barna J, Erdelyi P, Takacs-Vellai K, Orosz L, Kovacs AL, Csikos G, Sass M et al (2008) Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4:330–338PubMedGoogle Scholar
  68. Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK (2008) Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132:1025–1038PubMedCrossRefGoogle Scholar
  69. Vellai T (2009) Autophagy genes and ageing. Cell Death Differ 16:94–102PubMedCrossRefGoogle Scholar
  70. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:620PubMedCrossRefGoogle Scholar
  71. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407PubMedCrossRefGoogle Scholar
  72. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689PubMedCrossRefGoogle Scholar
  73. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822PubMedCrossRefGoogle Scholar
  74. Zhang C, Cuervo AM (2008) Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med 14:959–965PubMedCrossRefGoogle Scholar
  75. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283:10892–10903PubMedCrossRefGoogle Scholar
  76. Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6:472–483PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Molecular Biology and BiotechnologyFoundation for Research and TechnologyHeraklion, CreteGreece

Personalised recommendations