Advertisement

Biogerontology

, Volume 11, Issue 6, pp 643–669 | Cite as

Suitability of the clonal marbled crayfish for biogerontological research: a review and perspective, with remarks on some further crustaceans

  • Günter Vogt
Review Article

Abstract

This article examines the suitability of the parthenogenetic marbled crayfish for research on ageing and longevity. The marbled crayfish is an emerging laboratory model for development, epigenetics and toxicology that produces up to 400 genetically identical siblings per batch. It is easily cultured, has an adult size of 4–9 cm, a generation time of 6–7 months and a life span of 2–3 years. Experimental data and biological peculiarities like isogenicity, direct development, indeterminate growth, high regeneration capacity and negligible senescence suggest that the marbled crayfish is particularly suitable to investigate the dependency of ageing and longevity from non-genetic factors such as stochastic developmental variation, allocation of metabolic resources, damage and repair, caloric restriction and social stress. It is also well applicable to examine alterations of the epigenetic code with increasing age and to identify mechanisms that keep stem cells active until old age. As a representative of the sparsely investigated crustaceans and of animals with indeterminate growth and extended brood care the marbled crayfish may even contribute to evolutionary theories of ageing and longevity. Some relatives are recommended as substitutes for investigation of topics, for which the marbled crayfish is less suitable like genetics of ageing and achievement of life spans of decades under conditions of low food and low temperature. Research on ageing in the marbled crayfish and its relatives is of practical relevance for crustacean fisheries and aquaculture and may offer starting points for the development of novel anti-ageing interventions in humans.

Keywords

Marbled crayfish Crustacea Negligible senescence Allocation of resources Epigenetics Stem cells Social stress 

References

  1. Abele D, Strahl J, Brey T, Philipp EER (2008) Imperceptible senescence: ageing in the ocean quahog Arctica islandica. Free Rad Res 42:474–480. doi: 10.1080/10715760802108849 CrossRefGoogle Scholar
  2. Alwes F, Scholtz G (2006) Stages and other aspects of the embryology of the parthenogenetic Marmorkrebs (Decapoda, Reptantia, Astacida). Dev Genes Evol 216:169–184. doi: 10.1007/s00427-005-0041-8 PubMedCrossRefGoogle Scholar
  3. Anisimov VN, Sikora E, Pawelec G (2009) Relationships between cancer and aging: a multilevel approach. Biogerontology 10:323–338. doi: 10.1007/s10522-008-9209-8 PubMedCrossRefGoogle Scholar
  4. Arenal A, Pimentel R, Pimentel E, Martín L, Santiesteban D, Franco R, Aleström P (2008) Growth enhancement of shrimp (Litopenaeus schmitti) after transfer of tilapia growth hormone gene. Biotechnol Lett 30:845–851. doi: 10.1007/s10529-008-9636-2 PubMedCrossRefGoogle Scholar
  5. Artandi SE (2008) Telomerase as a potential regulator of tissue progenitor cells. In: Rudolph KL (ed) Telomeres and telomerase in ageing, disease, and cancer. Molecular mechanisms of adult stem cell ageing. Springer, Berlin, pp 203–210CrossRefGoogle Scholar
  6. Augustin H, Partridge L (2009) Invertebrate models of age-related muscle degeneration. Biochim Biophys Acta 1790:1084–1094. doi: 10.1016/j.bbagen.2009.06.011 PubMedGoogle Scholar
  7. Austad SN (2001) An experimental paradigm for the study of slowly aging organisms. Exp Gerontol 36:599–605. doi: 10.1016/S0531-5565(00)00229-1 PubMedCrossRefGoogle Scholar
  8. Austad SN (2009) Is there a role for new invertebrate models for aging research? J Gerontol A Biol Sci Med Sci 64A:192–194. doi: 10.1093/gerona/gln059 Google Scholar
  9. Austad SN, Podlutsky A (2006) A critical evaluation of nonmammalian models for aging research. In: Masoro EJ, Austad SN (eds) Handbook of the biology of aging, 6th edn. Academic Press, San Diego, pp 449–467Google Scholar
  10. Baeza JA, Fernández M (2002) Active brood care in Cancer setosus (Crustacea: Decapoda): the relationship between female behaviour, embryo oxygen consumption and the cost of brooding. Funct Ecol 16:241–251. doi: 10.1046/j.1365-2435.2002.00616.x CrossRefGoogle Scholar
  11. Banerjee P, Crawford L, Samuelson E, Feuer G (2010) Hematopoietic stem cells and retroviral infection. Retrovirol 7:8. doi: 10.1186/1742-4690-7-8 CrossRefGoogle Scholar
  12. Bartke A (2008) New findings in gene knockout, mutant and transgenic mice. Exp Gerontol 43:11–14. doi: 10.1016/j.exger.2007.10.009 PubMedCrossRefGoogle Scholar
  13. Belchier M, Edsman L, Sheehy MRJ, Shelton PMJ (1998) Estimating age and growth in long-lived temperate freshwater crayfish using lipofuscin. Freshw Biol 39:439–446. doi: 10.1046/j.1365-2427.1998.00292.x CrossRefGoogle Scholar
  14. Beytut E, Barim O, Kamiloglu NN (2009) Different levels of dietary DL-α tocopheryl acetate modulate the antioxidant defence system in the hepatopancreas, gills and muscles of the freshwater crayfish, Astacus leptodactylus (Eschscholtz, 1823). J Anim Vet Adv 8:1177–1184. doi: 10.3923/javaa.2009.1177.1184 Google Scholar
  15. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21. doi: 10.1101/gad.947102 PubMedCrossRefGoogle Scholar
  16. Bizon JL, Woods AG (eds) (2009) Animals models of human cognitive aging. Humana Press, New YorkGoogle Scholar
  17. Bluhm BA, Brey T (2001) Age determination in the Antarctic shrimp Notocrangon antarcticus (Crustacea: Decapoda), using the autofluorescent pigment lipofuscin. Mar Biol 138:247–257. doi: 10.1007/s002270000458 CrossRefGoogle Scholar
  18. Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, Sparrow D, Vokonas P, Baccarelli A (2009) Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev 130:234–239. doi: 10.1016/j.mad.2008.12.003 PubMedCrossRefGoogle Scholar
  19. Braeckman BP, Vanfleteren JR (2007) Genetic control of longevity in C. elegans. Exp Gerontol 42:90–98. doi: 10.1016/j.exger.2006.04.010 PubMedCrossRefGoogle Scholar
  20. Brunet-Rossinni AK, Austad SN (2004) Ageing studies on bats: a review. Biogerontol 5:211–222. doi: 10.1023/B:BGEN.0000038022.65024.d8 CrossRefGoogle Scholar
  21. Buffenstein R (2005) The naked mole-rat: a new long-living model for human aging research. J Gerontol Biol Sci 60A:1369–1377. doi: 10.1093/gerona/60.11.1369 Google Scholar
  22. Buffenstein R (2008) Negligible senescence in the longest living rodent, the naked-mole rat: insights from a successfully aging species. J Comp Physiol B 178:439–445. doi: 10.1007/s00360-007-0237-5 PubMedCrossRefGoogle Scholar
  23. Buřič M, Kozák P, Vích P (2008) Evaluation of different marking methods for spiny-cheek crayfish (Orconectes limosus). Knowl Manag Aquat Ecosyst 389:2. doi: 10.1051/kmae:2008004 CrossRefGoogle Scholar
  24. Cadenas E, Davies KJA (2000) Mitochondrial free radical generation, oxidative stress and aging. Free Rad Biol Med 29:222–230. doi: 10.1016/S0891-5849(00)00317-8 PubMedCrossRefGoogle Scholar
  25. Calvanese V, Lara E, Kahn A, Fraga MF (2009) The role of epigenetics in aging and age-related diseases. Ageing Res Rev 8:268–276. doi: 10.1016/j.arr.2009.03.004 PubMedCrossRefGoogle Scholar
  26. Campisi G, Chiappelli M, De Martinis M, Franco V, Ginaldi L, Guiglia R, Licastro F, Lio D (2009) Pathophysiology of age-related diseases. Immun Ageing 6:12. doi: 10.1186/1742-4933-6-12 PubMedCrossRefGoogle Scholar
  27. Cerenius L, Lee BL, Söderhäll K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29:263–271. doi: 10.1016/j.it.2008.02.009 PubMedCrossRefGoogle Scholar
  28. Cheng HW, Muir WM (2004) Chronic social stress differentially regulates neuroendocrine responses in laying hens: II. Genetic basis of adrenal responses under three different social conditions. Psychoneuroendocrinol 29:961–971. doi: 10.1016/j.psyneuen.2003.09.002 CrossRefGoogle Scholar
  29. Conn PM (ed) (2006) Handbook of models for human aging. Elsevier Academic Press, Burlington, MAGoogle Scholar
  30. Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132:2393S–2400SPubMedGoogle Scholar
  31. Corey SJ, Minden MD, Barber DL, Kantarjian H, Wang JCY, Schimmer AD (2007) Myelodysplastic syndromes: the complexity of stemcell diseases. Nat Rev Cancer 7:118–129. doi: 10.1038/nrc2047 PubMedCrossRefGoogle Scholar
  32. Davis LE, Burnett AL (1964) A study of growth and cell differentiation in the hepatopancreas of the crayfish. Dev Biol 10:122–153. doi: 10.1016/0012-1606(64)90008-9 PubMedCrossRefGoogle Scholar
  33. Decker H, Föll R (2000) Temperature adaptation influences the aggregation state of hemocyanin from Astacus leptodactylus. Comp Biochem Physiol A 127:147–154. doi: 10.1016/S1095-6433(00)00248-8 Google Scholar
  34. Dolinoy DC, Weidman JR, Jirtle RL (2007) Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol 23:297–307. doi: 10.1016/j.reprotox.2006.08.012 PubMedCrossRefGoogle Scholar
  35. Dorn NJ, Volin JC (2009) Resistance of crayfish (Procambarus spp.) populations to wetland drying depends on species and substrate. J N Am Benthol Soc 28:766–777. doi: 10.1899/08-151.1 Google Scholar
  36. Dowling DK, Simmons LW (2009) Reactive oxygen species as universal constraints in life-history evolution. Proc R Soc B 276:1737–1745. doi: 10.1098/rspb.2008.1791 PubMedCrossRefGoogle Scholar
  37. Dudycha JL (2000) Evolutionary biology: Crustacea as a model of aging. In: Morley JE, Armbrecht HJ, Coe RM, Vellas B (eds) The science of geriatrics, vol 1. Serdi Publisher, Paris, pp 187–198Google Scholar
  38. Dudycha JL (2003) A multi-environment comparison of senescence between sister species of Daphnia. Oecologia 135:555–563. doi: 10.1007/s00442-003-1230-7 PubMedGoogle Scholar
  39. Ebert TA (2008) Longevity and lack of senescence in the red sea urchin Strongylocentrotus franciscanus. Exp Gerontol 43:734–738. doi: 10.1016/j.exger.2008.04.015 PubMedCrossRefGoogle Scholar
  40. Enns LC, Wiley JC, Ladiges WC (2008) Clinical relevance of transgenic mouse models for aging research. Crit Rev Eukar Gene Expr 18:81–91Google Scholar
  41. Farca Luna AJ, Hurtado-Zavala JI, Reischig T, Heinrich R (2009) Circadian regulation of agonistic behavior in groups of parthenogenetic marbled crayfish, Procambarus sp. J Biol Rhythm 24:64–72. doi: 10.1177/0748730408328933 CrossRefGoogle Scholar
  42. Farca Luna AJ, Heinrich R, Reischig T (2010) The circadian biology of the marbled crayfish. Front Biosci E2:1414–1431. doi: 10.2741/e202 CrossRefGoogle Scholar
  43. Finch CE (1990) Longevity, senescence, and the genome. University of Chicago Press, ChicagoGoogle Scholar
  44. Finch CE (2009) Update on slow aging and negligible senescence––a mini review. Gerontology 55:307–313. doi: 10.1159/000215589 PubMedCrossRefGoogle Scholar
  45. Finch CE, Kirkwood TBL (2000) Chance, development, and aging. Oxford University Press, New YorkGoogle Scholar
  46. Finch CE, Ruvkun G (2001) The genetics of aging. Ann Rev Genom Hum Genet 2:435–462. doi: 10.1146/annurev.genom.2.1.435 CrossRefGoogle Scholar
  47. Finch CE, Seeman TE (1999) Stress theories of aging. In: Bengtson VL, Schaie KW (eds) Handbook of theories of aging. Springer, New York, pp 81–97Google Scholar
  48. Fonseca DB, Brancato CL, Prior AE, Shelton PMJ, Sheehy MRJ (2005) Death rates reflect accumulating brain damage in arthropods. Proc R Soc B 272:1941–1947. doi: 10.1098/rspb.2005.3192 PubMedCrossRefGoogle Scholar
  49. Fraga MF, Esteller M (2007) Epigenetics and aging: the targets and the marks. Trends Genet 23:413–418. doi: 10.1016/j.tig.2007.05.008 PubMedCrossRefGoogle Scholar
  50. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suñer D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu Y-Z, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609. doi: 10.1073/pnas.0500398102 PubMedCrossRefGoogle Scholar
  51. Gerhard GS (2007) Small laboratory fish as models for aging research. Ageing Res Rev 6:64–72. doi: 10.1016/j.arr.2007.02.007 PubMedCrossRefGoogle Scholar
  52. Gherardi F, Souty-Grosset C, Vogt G, Diéguez-Uribeondo J, Crandall KA (2010) Infraorder Astacidea Latreille, 1802 pp: the freshwater crayfish. In: Schram FR, von Vaupel Klein JC (eds), Treatise on zoology - anatomy, taxonomy, biology - the Crustacea, Decapoda, vol 9A. Brill, Leiden (in press)Google Scholar
  53. Giribet G, Richter S, Edgecombe GD, Wheeler WC (2005) The position of crustaceans within Arthropoda––evidence from nine molecular loci and morphology. In: Koenemann S, Jenner RA (eds) Crustacea and arthropod relationships. Crustacean issues, vol 16. Francis & Taylor, Boca Raton, pp 307–352Google Scholar
  54. Gorbunova V, Seluanov A (2009) Coevolution of telomerase activity and body mass in mammals: from mice to beavers. Mech Ageing Dev 130:3–9. doi: 10.1016/j.mad.2008.02.008 PubMedCrossRefGoogle Scholar
  55. Gray DA, Woulfe J (2005) Lipofuscin and aging: a matter of toxic waste. Sci Aging Knowl Environ 2005 (5):rel. doi: 10.1126/sageke.2005.5.re1
  56. Grotewiel MS, Martin I, Bhandari P, Cook-Wiens E (2005) Functional senescence in Drosophila melanogaster. Ageing Res Rev 4:372–397. doi: 10.1016/j.arr.2005.04.001 PubMedCrossRefGoogle Scholar
  57. Hartnoll RG (1982) Growth. In: Abele LG (ed) The biology of Crustacea, vol. 2: embryology, morphology, and genetics. Academic Press, New York, pp 111–196Google Scholar
  58. Heino M, Kaitala V (1999) Evolution of resource allocation between growth and reproduction in animals with indeterminate growth. J Evol Biol 12:423–429. doi: 10.1046/j.1420-9101.1999.00044.x CrossRefGoogle Scholar
  59. Helfand SL, Rogina B (2003) Genetics of aging in the fruit fly, Drosophila melanogaster. Annu Rev Genet 37:329–348. doi: 10.1146/annurev.genet.37.040103.095211 PubMedCrossRefGoogle Scholar
  60. Hengherr S, Brümmer F, Schill RO (2008) Anhydrobiosis in tardigrades and its effects on longevity traits. J Zool 275:216–220. doi: 10.1111/j.1469-7998.2008.00427.x CrossRefGoogle Scholar
  61. Holmes DJ (2004) Naturally long-lived animal models for the study of slow aging and longevity. Ann NY Acad Sci 1019:483–485. doi: 10.1196/annals.1297.088 PubMedCrossRefGoogle Scholar
  62. Holmes DJ, Kristan DM (2008) Comparative and alternative approaches and novel animal models for aging research. AGE 30:63–73. doi: 10.1007/s11357-008-9068-x PubMedCrossRefGoogle Scholar
  63. Holmes DJ, Ottinger MA (2003) Birds as long-lived animal models for the study of aging. Exp Gerontol 38:1365–1375. doi: 10.1016/j.exger.2003.10.018 PubMedCrossRefGoogle Scholar
  64. Hopkins PM, Chung AC-K, Durica DS (1999) Limb regeneration in the fiddler crab, Uca pugilator: histological, physiological and molecular considerations. Am Zool 39:513–526. doi: 10.1093/icb/39.3.513 Google Scholar
  65. Houthoofd K, Vanfleteren JR (2006) The longevity effect of dietary restriction in Caenorhabditis elegans. Exp Gerontol 41:1026–1031. doi: 10.1016/j.exger.2006.05.007 PubMedCrossRefGoogle Scholar
  66. Hughes KA, Reynolds RM (2005) Evolutionary and mechanistic theories of aging. Annu Rev Entomol 50:421–445. doi: 10.1146/annurev.ento.50.071803.130409 PubMedCrossRefGoogle Scholar
  67. Huryn AD, Venarsky MP, Kuhjada BJ (2008) Assessment of population size, age structure and growth rates for cave inhabiting crayfish in Alabama. SWG Grant Number T-03-02, Final Report. http://www.outdooralabama.com/research-mgmt/State%20Wildlife%20Grants/Cave%20Crayfish%20Final%20Report.pdf
  68. Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69:443–449. doi: 10.1021/np050354+ PubMedCrossRefGoogle Scholar
  69. Hwang ES, Yoon G, Kang HT (2009) A comparative analysis of the cell biology of senescence and aging. Cell Mol Life Sci 66:2503–2524. doi: 10.1007/s00018-009-0034-2 PubMedCrossRefGoogle Scholar
  70. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet Suppl 33:245–254. doi: 10.1038/ng1089 CrossRefGoogle Scholar
  71. James MO, Boyle SM (1998) Cytochromes P450 in Crustacea. Comp Biochem Physiol C 121:157–172. doi: 10.1016/S0742-8413(98)10036-1 PubMedGoogle Scholar
  72. Jasienska G (2009) Reproduction and life span: trade-offs, overall energy budgets, intergenerational costs, and costs neclected by research. Am J Hum Biol 21:524–532. doi: 10.1002/ajhb.20931 PubMedCrossRefGoogle Scholar
  73. Jiang H, Ju Z, Rudolph KL (2007) Telomere shortening and ageing. Z Gerontol Geriat 40:314–324. doi: 10.1007/s00391-007-0480-0 CrossRefGoogle Scholar
  74. Jiang H, Yin Y, Zhang X, Hu S, Wang Q (2009) Chasing relationships between nutrition and reproduction: a comparative transcriptome analysis of hepatopancreas and testis from Eriocheir sinensis. Comp Biochem Physiol D 4:227–234. doi: 10.1016/j.cbd.2009.05.001 Google Scholar
  75. Jimenez SA, Faulkes Z (2010) Establishment and care of a colony of parthenogenetic marbled crayfish, Marmorkrebs. Invertebr Rearing 1:10–18Google Scholar
  76. Jiravanichpaisal P, Söderhäll K, Söderhäll I (2006) Characterization of white spot syndrome virus replication in in vitro-cultured haematopoietic stem cells of freshwater crayfish, Pacifastacus leniusculus. J Gen Virol 87:847–854. doi: 10.1099/vir.0.81758-0 PubMedCrossRefGoogle Scholar
  77. Johnson TE (2003) Advantages and disadvantages of Caenorhabditis elegans for aging research. Exp Gerontol 38:1329–1332. doi: 10.1016/j.exger.2003.10.020 PubMedCrossRefGoogle Scholar
  78. Johnson TE (2008) Caenorhabditis elegans 2007: the premier model for the study of aging. Exp Gerontol 43:1–4. doi: 10.1016/j.exger.2007.09.008 PubMedCrossRefGoogle Scholar
  79. Jones JPG, Rasamy JR, Harvey A, Toon A, Oidtmann B, Randrianarison MH, Raminosoa N, Ravoahangimalala OR (2009) The perfect invader: a parthenogenic crayfish poses a new threat to Madagascar’s freshwater biodiversity. Biol Invasions 11:1475–1482. doi: 10.1007/s10530-008-9334-y CrossRefGoogle Scholar
  80. Jung T, Bader N, Grune T (2007) Lipofuscin: formation, distribution, and metabolic consequences. Ann NY Acad Sci 1119:97–111. doi: 10.1196/annals.1404.008 PubMedCrossRefGoogle Scholar
  81. Kawai T, Scholtz G, Morioka S, Ramanamandimby F, Lukhaup C, Hanamura Y (2009) Parthenogenetic alien crayfish (Decapoda: Cambaridae) spreading in Madagascar. J Crust Biol 29:562–567. doi: 10.1651/08-3125.1 CrossRefGoogle Scholar
  82. Keller L, Jemielity S (2006) Social insects as a model to study the molecular basis of ageing. Exp Gerontol 41:553–556. doi: 10.1016/j.exger.2006.04.002 PubMedCrossRefGoogle Scholar
  83. Kennedy BK (2008) The genetics of ageing: insight from genome-wide approaches in invertebrate model organisms. J Int Med 263:142–152. doi: 10.1111/j.1365-2796.2007.01903.x Google Scholar
  84. Kirkwood TBL (1996) Human senescence. BioEssays 18:1009–1016. doi: 10.1002/bies.950181211 PubMedCrossRefGoogle Scholar
  85. Kirkwood TBL (2002) Evolution of ageing. Mech Ageing Dev 123:737–745. doi: 10.1016/S0047-6374(01)00419-5 PubMedCrossRefGoogle Scholar
  86. Kirkwood TBL (2008) Understanding ageing from an evolutionary perspective. J Intern Med 263:117–127. doi: 10.1111/j.1365-2796.2007.01901.x PubMedCrossRefGoogle Scholar
  87. Kirkwood TBL, Austad SN (2000) Why do we age? Nature 408:233–238. doi: 10.1038/35041682 PubMedCrossRefGoogle Scholar
  88. Kirkwood TBL, Feder M, Finch CE, Franceschi C, Globerson A, Klingenberg CP, LaMarco K, Omholt S, Westendorp RGJ (2005) What accounts for the wide variation in life span of genetically identical organisms reared in a constant environment? Mech Ageing Dev 126:439–443. doi: 10.1016/j.mad.2004.09.008 PubMedCrossRefGoogle Scholar
  89. Klapper W, Kühne K, Singh KK, Heidorn K, Parwaresh R, Krupp G (1998) Longevity of lobsters is linked to ubiquitous telomerase expression. FEBS Lett 439:143–146. doi: 10.1016/S0014-5793(98)01357-X PubMedCrossRefGoogle Scholar
  90. Koyama T, Asakawa S, Katagiri T, Shimizu A, Fagutao FF, Mavichak R, Santos MD, Fuji K, Sakamoto T, Kitakado T, Kondo H, Shimizu N, Aoki T, Hirono I (2010) Hyper-expansion of large DNA segments in the genome of kuruma shrimp, Marsupenaeus japonicus. BMC Genom 11:141. doi: 10.1186/1471-2164-11-141 CrossRefGoogle Scholar
  91. Kuck D, Singh N, Lyko F, Medina-Franco JL (2010) Novel and selective DNA methyltransferase inhibitors: docking-based virtual screening and experimental evaluation. Bioorg Med Chem 18:822–829. doi: 10.1016/j.bmc.2009.11.050 PubMedCrossRefGoogle Scholar
  92. Kuningas M, Mooijaart SP, van Heemst D, Zwaan BJ, Slagboom PE, Westendorp RGJ (2008) Genes encoding longevity: from model organisms to humans. Aging Cell 7:270–280. doi: 10.1111/j.1474-9726.2008.00366.x PubMedCrossRefGoogle Scholar
  93. Leignel V, Marchand J, Moreau B, Chénais B (2008) Metallothionein genes from hydrothermal crabs (Bythograeidae, Decapoda): characterization, sequence analysis, gene expression and comparison with coastal crabs. Comp Biochem Physiol C 148:6–13. doi: 10.1016/j.cbpc.2008.02.005 Google Scholar
  94. Liang R, Bates DJ, Wang E (2009) Epigenetic control of microRNA expression and aging. Curr Genom 10:184–193. doi: 10.2174/138920209788185225 CrossRefGoogle Scholar
  95. Link CD (2001) Transgenic invertebrate models of age-associated neurodegenerative diseases. Mech Ageing Dev 122:1639–1649. doi: 10.1016/S0047-6374(01)00291-3 PubMedCrossRefGoogle Scholar
  96. Lithgow GJ, Gill MS, Olsen A, Sampayo JN (2005) Pharmacological intervention in invertebrate aging. AGE 27:213–223. doi: 10.1007/s11357-005-3625-3 CrossRefGoogle Scholar
  97. Liu RK, Walford RL (1972) The effect of lowered body temperature on lifespan and immune and non-immune processes. Gerontologia 18:363–388. doi: 10.1159/000211944 PubMedCrossRefGoogle Scholar
  98. López-Torres M, Gredilla R, Sanz A, Barja G (2002) Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria. Free Rad Biol Med 32:882–889. doi: 10.1016/S0891-5849(02)00773-6 PubMedCrossRefGoogle Scholar
  99. Lundberg U (2004) Behavioural elements of the noble crayfish, Astacus astacus (Linnaeus, 1758). Crustaceana 77:137–162. doi: 10.1163/156854004774003510 CrossRefGoogle Scholar
  100. Lyko F, Beisel C, Marhold J, Paro R (2006) Epigenetic regulation in Drosophila. Curr Top Microbiol Immunol 310:23–44PubMedCrossRefGoogle Scholar
  101. Maginnis TL (2006) The costs of autotomy and regeneration in animals: a review and framework for future research. Behav Ecol 17:857–872. doi: 10.1093/beheco/arl010 CrossRefGoogle Scholar
  102. Mangel M (2008) Environment, damage and senescence: modelling the life-history consequences of variable stress and caloric intake. Funct Ecol 22:422–430. doi: 10.1111/j.1365-2435.2008.01410.x CrossRefGoogle Scholar
  103. Martin LB II, Scheuerlein A, Wikelski M (2002) Immune activity elevates energy expenditure of house sparrows: a link between direct and indirect costs? Proc R Soc Lond B 270:153–158. doi: 10.1098/rspb.2002.2185 CrossRefGoogle Scholar
  104. Martin GM (2009) Epigenetic gambling and epigenetic drift as an antagonistic pleiotropic mechanism of aging. Aging Cell 8:761–764. doi: 10.1111/j.1474-9726.2009.00515.x PubMedCrossRefGoogle Scholar
  105. Martin JW, Davis GE (2001) An updated classification of the recent Crustacea. Science series, vol 39. Natural History Museum of Los Angeles County, Los AngelesGoogle Scholar
  106. Martin GM, Austad SN, Johnson TE (1996) Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet 13:25–34. doi: 10.1038/ng0596-25 PubMedCrossRefGoogle Scholar
  107. Martin P, Kohlmann K, Scholtz G (2007) The parthenogenetic Marmorkrebs (marbled crayfish) produces genetically uniform offspring. Naturwissenschaften 94:843–846. doi: 10.1007/s00114-007-0260-0 PubMedCrossRefGoogle Scholar
  108. Martin P, Dorn NJ, Kawai T, van der Heiden C, Scholtz G (2010) The enigmatic Marmorkrebs (marbled crayfish) is the parthenogenetic form of Procambarus fallax. Contrib Zool (in press)Google Scholar
  109. Martynova MG (1993) Satellite cells in the crayfish heart muscle function as stem cells and are characterized by molt-dependent behaviour. Zool Anz 230:181–190Google Scholar
  110. Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126:913–922. doi: 10.1016/j.mad.2005.03.012 PubMedCrossRefGoogle Scholar
  111. Masoro EJ (2009a) Biochemical and molecular mechanisms of aging: from model systems to human longevity. Biochim Biophys Acta 1790:949–950. doi: 10.1016/j.bbagen.2009.08.009 PubMedGoogle Scholar
  112. Masoro EJ (2009b) Caloric restriction-induced life extension of rats and mice: a critique of proposed mechanisms. Biochim Biophys Acta 1790:1040–1048. doi: 10.1016/j.bbagen.2009.02.011 PubMedGoogle Scholar
  113. McTaggart SJ, Conlon C, Colbourne JK, Blaxter ML, Little TJ (2009) The components of the Daphnia pulex immune system as revealed by complete genome sequencing. BMC Genom 10:175. doi: 10.1186/1471-2164-10-175 CrossRefGoogle Scholar
  114. Miller JK (2001) Escaping senescence: demographic data from the three-toed box turtle (Terrapene carolina triunguis). Exp Gerontol 36:829–832. doi: 10.1016/S0531-5565(00)00243-6 PubMedCrossRefGoogle Scholar
  115. Min K-J, Yamamoto R, Buch S, Pankratz M, Tatar M (2008) Drosophila lifespan control by dietary restriction independent of insulin-like signaling. Aging Cell 7:199–206. doi: 10.1111/j.1474-9726.2008.00373.x PubMedCrossRefGoogle Scholar
  116. Miquel J, Lundgren PR, Bensch KG, Atlan H (1976) Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster. Mech Ageing Dev 5:347–370. doi: 10.1016/0047-6374(76)90034-8 PubMedCrossRefGoogle Scholar
  117. Miyazaki T, Yamaguchi K, Yasumoto S, Takahashi Y (2008) Electron microscopy on the heart of kuruma prawn Penaeus japonicus artificially infected with penaeid rod-shaped DNA virus. Fish Pathol 43:97–105. doi: 10.3147/jsfp.43.97 CrossRefGoogle Scholar
  118. Mockett RJ, Cooper TM, Orr WC, Sohal RS (2006) Effects of caloric restriction are species-specific. Biogerontol 7:157–160. doi: 10.1007/s10522-006-9004-3 CrossRefGoogle Scholar
  119. Mouton S, Willems M, Braeckman BP, Egger B, Ladurner P, Schärer L, Borgonie G (2009) The free-living flatworm Macrostomum lignano: a new model organism for ageing research. Exp Gerontol 44:243–249. doi: 10.1016/j.exger.2008.11.007 PubMedCrossRefGoogle Scholar
  120. Münch D, Amdam GV, Wolschin F (2008) Ageing in a eusocial insect: molecular and physiological characteristics of life span plasticity in the honey bee. Funct Ecol 22:407–421. doi: 10.1111/j.1365-2435.2008.01419.x PubMedCrossRefGoogle Scholar
  121. Naguib YMA (2000) Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem 48:1150–1154. doi: 10.1021/jf991106k PubMedCrossRefGoogle Scholar
  122. Osorio FG, Obaya ÁJ, López-Otín C, Freije JMP (2009) Accelerated ageing: from mechanism to therapy through animal models. Transgenic Res 18:7–15. doi: 10.1007/s11248-008-9226-z PubMedCrossRefGoogle Scholar
  123. Ozden S, Huerre M, Riviere J-P, Coffey LL, Afonso PV, Mouly V, de Monredon J, Roger J-C, El Amrani M, Yvin J-L, Jaffar M-C, Frenkiel M-P, Sourisseau M, Schwartz O, Butler-Browne G, Desprès P, Gessain A, Ceccaldi P-E (2007) Human muscle satellite cells as targets of Chikungunya virus infection. PLoS One 2(6):e527. doi: 10.1371/journal.pone.0000527 PubMedCrossRefGoogle Scholar
  124. Paaby AB, Schmidt PS (2009) Dissecting the genetics of longevity in Drosophila melanogaster. Fly 3:29–38. doi: 10.4161/fly.3.1.7771 PubMedCrossRefGoogle Scholar
  125. Pan C-H, Chien Y-H, Hunter B (2003) The resistance to ammonia stress of Penaeus monodon Fabricius juvenile fed diets supplemented with astaxanthin. J Exp Mar Biol Ecol 297:107–118. doi: 10.1016/j.jembe.2003.07.002 CrossRefGoogle Scholar
  126. Partridge L (2009) Some highlights of research on aging with invertebrates, 2009. Aging Cell 8:509–513. doi: 10.1111/j.1474-9726.2009.00498.x PubMedCrossRefGoogle Scholar
  127. Passos JF, von Zglinicki T, Kirkwood TBL (2007) Mitochondria and ageing: winning and losing in the numbers game. BioEssays 29:908–917. doi: 10.1002/bies.20634 PubMedCrossRefGoogle Scholar
  128. Pérez VI, Buffenstein R, Masamsetti V, Leonard S, Salmon AB, Mele J, Andziak B, Yang T, Edrey Y, Friguet B, Ward W, Richardson A, Chaudhuri A (2009) Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. PNAS 106:3059–3064. doi: 10.1073/pnas.0809620106 PubMedCrossRefGoogle Scholar
  129. Pfeiffer M (2005) Marmorkrebse überleben im Eis. Fisch Teichwirt 6/2005:204Google Scholar
  130. Phelan JP, Rose MR (2006) Caloric restriction increases longevity substantially only when the reaction norm is steep. Biogerontol 7:161–164. doi: 10.1007/s10522-006-9005-2 CrossRefGoogle Scholar
  131. Philipp EER, Abele D (2010) Masters of longevity: lessons from long-lived bivalves––a mini review. Gerontology 56:55–65. doi: 10.1159/000221004 PubMedCrossRefGoogle Scholar
  132. Piraino S, De Vito D, Schmich J, Bouillon J, Boero F (2004) Reverse development in Cnidaria. Can J Zool 82:1748–1754. doi: 10.1139/Z04-174 CrossRefGoogle Scholar
  133. Rajawat YS, Hilioti Z, Bossis I (2009) Aging: central role for autophagy and the lysosomal degradative system. Aging Res Rev 8:199–213. doi: 10.1016/j.arr.2009.05.001 Google Scholar
  134. Rattan SIS (2006) Biological causes of aging and age-related diseases. In: Rattan SIS, Kassem M (eds) Prevention and treatment of age-related diseases. Springer, Dordrecht, pp 1–13. doi: 10.1007/1-4020-5058-5_1 CrossRefGoogle Scholar
  135. Rattan SIS, Singh R (2009) Progress and prospects: gene therapy in aging. Gene Ther 16:3–9. doi: 10.1038/gt.2008.166 PubMedCrossRefGoogle Scholar
  136. Rea SL, Wu D, Cypser JR, Vaupel JW, Johnson TE (2005) A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nat Genet 37:894–898. doi: 10.1038/ng1608 PubMedCrossRefGoogle Scholar
  137. Reynolds JD (2002) Growth and reproduction. In: Holdich DM (ed) Biology of freshwater crayfish. Blackwell, Oxford, pp 152–191Google Scholar
  138. Reznick D (1993) New model systems for studying the evolutionary biology of aging: Crustacea. Genetica 91:79–88. doi: 10.1007/BF01435989 PubMedCrossRefGoogle Scholar
  139. Richardson B (2003) Impact of aging on DNA methylation. Ageing Res Rev 2:245–261. doi: 10.1016/S1568-1637(03)00010-2 PubMedCrossRefGoogle Scholar
  140. Rieger V, Harzsch S (2008) Embryonic development of the histaminergic system in the ventral nerve cord of the Marbled Crayfish (Marmorkrebs). Tissue Cell 40:113–126. doi: 10.1016/j.tice.2007.10.004 PubMedCrossRefGoogle Scholar
  141. Rikke BA, Johnson TE (2004) Lower body temperature as a potential mechanism of life extension in homeotherms. Exp Gerontol 39:927–930. doi: 10.1016/j.exger.2004.03.020 PubMedCrossRefGoogle Scholar
  142. Robalino J, Carnegie RB, O’Leary N, Ouvry-Patat SA, de la Vega E, Prior S, Gross PS, Browdy CL, Chapman RW, Schey KL, Warr G (2009) Contributions of functional genomics and proteomics to the study of immune responses in the Pacific white leg shrimp Litopenaeus vannamei. Vet Immunol Immunopathol 128:110–118. doi: 10.1016/j.vetimm.2008.10.329 PubMedCrossRefGoogle Scholar
  143. Rose MR (1991) Evolutionary biology of aging. Oxford University Press, OxfordGoogle Scholar
  144. Rossi DJ, Jamieson CHM, Weissman IL (2008) Stem cells and the pathways to aging and cancer. Cell 132:681–696. doi: 10.1016/j.cell.2008.01.036 PubMedCrossRefGoogle Scholar
  145. Roy S, Gatien S (2008) Regeneration in axolotls: a model to aim for! Exp Gerontol 43:968–973. doi: 10.1016/j.exger.2008.09.003 PubMedCrossRefGoogle Scholar
  146. Sagi A, Rise M, Isam K, Arad S (1995) Carotenoids and their derivatives in organs of the maturing female crayfish Cherax quadricarinatus. Comp Biochem Physiol 112B:309–313. doi: 10.1016/0305-0491(95)00069-0 Google Scholar
  147. Salomon RN, Jackson FR (2008) Tumors of testis and midgut in aging flies. Fly 2:265–268PubMedGoogle Scholar
  148. Sandeman R, Sandeman D (2003) Development, growth, and plasticity in the crayfish olfactory system. Microsc Res Tech 60:266–277. doi: 10.1002/jemt.10266 PubMedCrossRefGoogle Scholar
  149. Sapolsky RM (2005) The influence of social hierarchy on primate health. Science 308:648–652. doi: 10.1126/science.1106477 PubMedCrossRefGoogle Scholar
  150. Sarmasik A, Jang I-K, Chun CZ, Lu JK, Chen TT (2001) Transgenic live-bearing fish and crustaceans produced by transforming immature gonads with replication-defective pantropic retroviral vectors. Mar Biotechnol 3:470–477. doi: 10.1007/s10126001-0019-0 PubMedCrossRefGoogle Scholar
  151. Schiewek R, Wirtz M, Thiemann M, Plitt K, Vogt G, Schmitz OJ (2007) Determination of the DNA methylation level of the marbled crayfish: an increase in sample throughput by an optimised sample preparation. J Chromatogr B 850:548–552. doi: 10.1016/j.jchromb.2006.11.040 CrossRefGoogle Scholar
  152. Scholtz G, Braband A, Tolley L, Reimann A, Mittmann B, Lukhaup C, Steuerwald F, Vogt G (2003) Parthenogenesis in an outsider crayfish. Nature 421:806. doi: 10.1038/421806a PubMedCrossRefGoogle Scholar
  153. Schulze-Röbbecke G (1951) Untersuchungen über Lebensdauer, Altern und Tod bei Arthropoden (Daphnia magna Straus, Dixippus (Carausius) morosus Brunner v. Wattenwyl und Melolontha melolontha L.). Zool Jb Abt Allg Zool Physiol 62:366–394Google Scholar
  154. Sebens KP (1987) The ecology of indeterminate growth in animals. Ann Rev Ecol Syst 18:371–407. doi: 10.1146/annurev.es.18.110187.002103 CrossRefGoogle Scholar
  155. Seitz R, Vilpoux K, Hopp U, Harzsch S, Maier G (2005) Ontogeny of the Marmorkrebs (marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J Exp Zool 303A:393–405. doi: 10.1002/jez.a.143 CrossRefGoogle Scholar
  156. Shanley DP, Kirkwood TBL (2006) Caloric restriction does not enhance longevity in all species and is unlikely to do so in humans. Biogerontol 7:165–168. doi: 10.1007/s10522-006-9006-1 CrossRefGoogle Scholar
  157. Sharp SP, Clutton-Brock TH (2010) Reproductive senescence in a cooperatively breeding mammal. J Anim Ecol 79:176–183. doi: 10.1111/j.1365-2656.2009.01616.x PubMedCrossRefGoogle Scholar
  158. Shechter A, Tom M, Yudkovski Y, Weil S, Chang SA, Chang ES, Chalifa-Caspi V, Berman A, Sagi A (2007) Search for hepatopancreatic ecdysteroid-responsive genes during the crayfish molt cycle: from a single gene to multigenicity. J Exp Biol 210:3525–3537. doi: 10.1242/jeb.006791 PubMedCrossRefGoogle Scholar
  159. Sheehy MRJ (2002) A flow-cytometric method for quantification of neurolipofuscin and comparison with existing histological and biochemical approaches. Arch Gerontol Geriatr 34:233–248. doi: 10.1016/S0167-4943(01)00217-5 PubMedCrossRefGoogle Scholar
  160. Sheehy MRJ, Shelton PMJ, Wickins JF, Belchier M, Gaten E (1996) Ageing the European lobster Homarus gammarus by the lipofuscin in its eyestalk ganglia. Mar Ecol Prog Ser 143:99–111. doi: 10.3354/meps143099 CrossRefGoogle Scholar
  161. Sheehy MRJ, Bannister RCA, Wickins JF, Shelton PMJ (1999) New perspectives on the growth and longevity of the European lobster (Homarus gammarus). Can J Fish Aquat Sci 56:1904–1915. doi: 10.1139/cjfas-56-10-1904 CrossRefGoogle Scholar
  162. Skinner DM, Cook JS (1991) New limbs for old: some highlights in the history of regeneration in Crustacea. In: Dinsmore CE (ed) A history of regeneration research. Milestones in the evolution of a science. Cambridge University Press, Cambridge, pp 25–45Google Scholar
  163. Söderhäll I, Kim Y-A, Jiravanichpaisal P, Lee S-Y, Söderhäll K (2005) An ancient role for a prokineticin domain in invertebrate hematopoiesis. J Immunol 174:6153–6160PubMedGoogle Scholar
  164. Song C-K, Johnstone LM, Schmidt M, Derby CD, Edwards DH (2007) Social domination increases neuronal survival in the brain of juvenile crayfish Procambarus clarkii. J Exp Biol 210:1311–1324. doi: 10.1242/jeb.02758 PubMedCrossRefGoogle Scholar
  165. Song Z, Ju Z, Rudolph KL (2009) Cell intrinsic and extrinsic mechanisms of stem cell aging depend on telomere status. Exp Gerontol 44:75–82. doi: 10.1016/j.exger.2008.06.009 PubMedCrossRefGoogle Scholar
  166. Sterlemann V, Rammes G, Wolf M, Liebl C, Ganea K, Müller MB, Schmidt MV (2010) Chronic social stress during adolescence induces cognitive impairment in aged mice. Hippocampus 20:540–549. doi: 10.1002/hipo.20655 PubMedGoogle Scholar
  167. Stillman JH, Colbourne JK, Lee CE, Patel NH, Phillips MR, Towle DW, Eads BD, Gelembuik GW, Henry RP, Johnson EA, Pfrender ME, Terwilliger NB (2008) Recent advances in crustacean genomics. Integr Comp Biol 48:852–868. doi: 10.1093/icb/icn096 CrossRefGoogle Scholar
  168. Sun PS, Venzon NC Jr, Calderon FRO, Esaki DM (2005) Evaluation of methods for DNA delivery into shrimp zygotes of Penaeus (Litopenaeus) vannamei. Aquaculture 243:19–26. doi: 10.1016/j.aquaculture.2004.09.037 CrossRefGoogle Scholar
  169. Terman A, Brunk UT (2006) Oxidative stress, accumulation of biological ‘garbage’, and aging. Antioxid Redox Signal 8:197–204. doi: 10.1089/ars.2006.8.197 PubMedCrossRefGoogle Scholar
  170. Terzibasi E, Valenzano DR, Cellerino A (2007) The short-lived fish Nothobranchius furzeri as a new model system for aging studies. Exp Gerontol 42:81–89. doi: 10.1016/j.exger.2006.06.039 PubMedCrossRefGoogle Scholar
  171. Thompson RF, Fazzari MJ, Greally JM (2010) Experimental approaches to the study of epigenomic dysregulation in ageing. Exp Gerontol 45:255–268. doi: 10.1016/j.exger.2009.12.013 PubMedCrossRefGoogle Scholar
  172. Van Vliet J, Oates NA, Whitelaw E (2007) Epigenetic mechanisms in the context of complex diseases. Cell Mol Life Sci 64:1531–1538. doi: 10.1007/s00018-007-6526-z PubMedCrossRefGoogle Scholar
  173. Van Voorhies WA, Ward S (1999) Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc Natl Acad Sci USA 96:11399–11403PubMedCrossRefGoogle Scholar
  174. Vermeulen CJ, Loeschcke V (2007) Longevity and the stress response in Drosophila. Exp Gerontol 42:153–159. doi: 10.1016/j.exger.2006.09.014 PubMedCrossRefGoogle Scholar
  175. Vogt G (1990) Pathology of midgut gland-cells of Penaeus monodon postlarvae after Leucaena leucocephala feeding. Dis Aquat Org 9:45–61CrossRefGoogle Scholar
  176. Vogt G (1994) Life-cycle and functional cytology of the hepatopancreatic cells of Astacus astacus (Crustacea, Decapoda). Zoomorphology 114:83–101. doi: 10.1007/BF00396642 CrossRefGoogle Scholar
  177. Vogt G (1999) Diseases of European freshwater crayfish, with particular emphasis on interspecific transmission of pathogens. In: Gherardi F, Holdich DM (eds) Crayfish in Europe as alien species. Crustacean issues, vol 11. Balkema, Rotterdam, pp 87–103Google Scholar
  178. Vogt G (2002) Functional anatomy. In: Holdich DM (ed) Biology of freshwater crayfish. Blackwell, Oxford, pp 53–151Google Scholar
  179. Vogt G (2007) Exposure of the eggs to 17α-methyl testosterone reduced hatching success and growth and elicited teratogenic effects in postembryonic life stages of crayfish. Aquat Toxicol 85:291–296. doi: 10.1016/j.aquatox.2007.09.012 PubMedGoogle Scholar
  180. Vogt G (2008a) How to minimize formation and growth of tumours: potential benefits of decapod crustaceans for cancer research. Int J Cancer 123:2727–2734. doi: 10.1002/ijc.23947 PubMedCrossRefGoogle Scholar
  181. Vogt G (2008b) The marbled crayfish: a new model organism for research on development, epigenetics and evolutionary biology. J Zool 276:1–13. doi: 10.1111/j.1469-7998.2008.00473.x CrossRefGoogle Scholar
  182. Vogt G (2008c) Investigation of hatching and early post-embryonic life of freshwater crayfish by in vitro culture, behavioral analysis, and light and electron microscopy. J Morphol 269:790–811. doi: 10.1002/jmor.10622 PubMedCrossRefGoogle Scholar
  183. Vogt G (2009) Research on aging and longevity in the parthenogenetic marbled crayfish, with special emphasis on stochastic developmental variation, allocation of metabolic resources, regeneration, and social stress. In: Bentely JV, Keller MA (eds) Handbook on longevity: genetics, diet and disease. Nova Science Publishers, Hauppauge, pp 353–372Google Scholar
  184. Vogt G, Quinitio ET (1994) Accumulation and excretion of metal granules in the prawn, Penaeus monodon, exposed to water-borne copper, lead, iron and calcium. Aquat Toxicol 28:223–241. doi: 10.1016/0166-445X(94)90035-3 CrossRefGoogle Scholar
  185. Vogt G, Štrus J (1999) Hypogean life-style fuelled by oil. Naturwissenschaften 86:43–45. doi: 10.1007/s001140050568 CrossRefGoogle Scholar
  186. Vogt G, Tolley L (2004) Brood care in freshwater crayfish and relationship with the offspring’s sensory deficiencies. J Morphol 262:566–582. doi: 10.1002/jmor.10169 PubMedCrossRefGoogle Scholar
  187. Vogt G, Storch V, Quinitio ET, Pascual FP (1985) Midgut gland as monitor organ for the nutritional value of diets in Penaeus monodon (Decapoda). Aquaculture 48:1–12. doi: 10.1016/0044-8486(85)90047-X CrossRefGoogle Scholar
  188. Vogt G, Tolley L, Scholtz G (2004) Life stages and reproductive components of the Marmorkrebs (marbled crayfish), the first parthenogenetic decapod crustacean. J Morphol 261:286–311. doi: 10.1002/jmor.10250 PubMedCrossRefGoogle Scholar
  189. Vogt G, Huber M, Thiemann M, van den Boogaart G, Schmitz OJ, Schubart CD (2008) Production of different phenotypes from the same genotype in the same environment by developmental variation. J Exp Biol 211:510–523. doi: 10.1242/jeb.008755 PubMedCrossRefGoogle Scholar
  190. Von Holst D, Hutzelmeyer H, Kaetzke P, Khaschei M, Schönheiter R (1999) Social rank, stress, fitness, and life expectancy in wild rabbits. Naturwissenschaften 86:388–393. doi: 10.1007/s001140050638 CrossRefGoogle Scholar
  191. Worden MK, Clark CM, Conaway M, Qadri SA (2006) Temperature dependence of cardiac performance in the lobster Homarus americanus. J Exp Biol 209:1024–1034. doi: 10.1242/jeb.02082 PubMedCrossRefGoogle Scholar
  192. Yen W-L, Klionsky DJ (2008) How to live long and prosper: autophagy, mitochondria, and aging. Physiology 23:248–262. doi: 10.1152/physiol.00013.2008 PubMedCrossRefGoogle Scholar
  193. Yen K, Mastitis JW, Mobbs CV (2004) Lifespan is not determined by metabolic rate: evidence from fishes and C. elegans. Exp Gerontol 39:947–949. doi: 10.1016/j.exger.2004.03.016 PubMedCrossRefGoogle Scholar
  194. Zhang Y, Allodi S, Sandeman DC, Beltz BS (2009) Adult neurogenesis in the crayfish brain: proliferation, migration, and possible origin of precursor cells. Dev Neurobiol 69:415–436. doi: 10.1002/dneu.20717 PubMedCrossRefGoogle Scholar
  195. Zimniak P (2008) Detoxification reactions: relevance to aging. Ageing Res Rev 7:281–300. doi: 10.1016/j.arr.2008.04.001 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of ZoologyUniversity of HeidelbergHeidelbergGermany

Personalised recommendations