Biogerontology

, 11:111

In vitro aging of 3T3-L1 mouse adipocytes leads to altered metabolism and response to inflammation

  • Elena Zoico
  • Vincenzo Di Francesco
  • Debora Olioso
  • Anna Maria Fratta Pasini
  • Anna Sepe
  • Ottavio Bosello
  • Saverio Cinti
  • Luciano Cominacini
  • Mauro Zamboni
Research Article

Abstract

We used an in vitro model to evaluate the effects of cellular aging and inflammation on the gene expression and protein secretion profiles of adipocytes. 3T3-L1 mouse preadipocytes were cultured according to standard conditions and analyzed at different time points both at the basal state and after an acute stimulation with LPS. The mRNA levels of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome proliferator-activated receptor (PPAR)γ and S100A1 were maximal during adipocyte differentiation and then significantly decreased. The expression of the GLUT4 and IRS-1 genes peaked during differentiation and then decreased in aged cells. The mRNA levels and secretion of adiponectin, quickly rose as adipocytes matured and then declined. The mRNA levels of IL6, as well as its secretion, increased as preadipocytes matured and became old cells; a similar trend was also found for MCP-1. LPS decreased the mRNA levels of C/EBPα and PPARγ at all time points, as well as those of GLUT4, IRS-1 and adiponectin. LPS significantly increased the mRNA levels of IL-6, as well as its secretion, with a similar trend also observed for MCP-1. These data suggest that aging adipocytes in vitro show a decline in pro-adipogenic signals, in genes involved in glucose metabolism and cytoskeleton maintenance and in adiponectin. These changes are paralleled by an increase in inflammatory cytokines; inflammation seems to mimic and amplify the effects of cellular aging on adipocytes.

Keywords

Adipocytes Cellular aging Inflammation Adipogenesis 

References

  1. Ajuwon KM, Spurlock ME (2005) Adiponectin inhibits LPS-induced NF-kappaB activation and IL-6 production and increases PPARgamma2 expression in adipocytes. Am J Physiol Regul Integr Comp Physiol 288(5):R1220–R1225. doi:10.1152/ajpregu.00397.2004 PubMedGoogle Scholar
  2. Cartwright M, Tchkonia T, Kirkland J (2007) Aging in adipocytes: potential impact of inherent, depot-specific mechanism. Exp Gerontol 42:463–471. doi:10.1016/j.exger.2007.03.003 CrossRefPubMedGoogle Scholar
  3. Chung S, LaPoint K, Martinez K, Kennedy A, Boysen Sandberg M, McIntosh MK (2006) Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes. Endocrinology 147(11):5340–5351. doi:10.1210/en.2006-0536 CrossRefPubMedGoogle Scholar
  4. Cinti S, Cigolini M, Morroni M, Zingaretti MC (1989) S-100 protein in white preadipocytes: an immunoelectronmicroscopic study. Anat Rec 224(4):466–472. doi:10.1002/ar.1092240403 CrossRefPubMedGoogle Scholar
  5. Coppack SW (2001) Pro-inflammatory cytokines and adipose tissue. Proc Nutr Soc 60:349–356. doi:10.1079/PNS2001110 CrossRefPubMedGoogle Scholar
  6. Donato R (2003) Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 60:540–551. doi:10.1002/jemt.10296 CrossRefPubMedGoogle Scholar
  7. Greenberg AS, Obin MS (2006) Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr 83:S461–S465Google Scholar
  8. Guo W, Pirtskhalava T, Tchkonia XieW, Thomou T, Han J, Wang T, Wong S, Cartwright A, Hegardt FG et al (2007) Aging results in paradoxical susceptibility of fat cell progenitors to lipotoxicity. Am J Physiol Endocrinol Metab 292:E1041–E1051. doi:10.1152/ajpendo.00557.2006 CrossRefPubMedGoogle Scholar
  9. Hirsch J, Han PW (1969) Cellularity of rat adipose tissue: effects of growth, starvation, and obesity. J Lipid Res 10:77–82PubMedGoogle Scholar
  10. Karagiannides I, Thomou T, Tchkonia T, Pirtskhalava T, Kypreos KE, Cartwright A, Dalagiorgou G, Lash TL, Farmer SR, Timchenko NA et al (2006) Increased CUG triplet repeat-binding protein-1 predisposes to impaired adipogenesis with aging. J Biol Chem 281:23025–23033. doi:10.1074/jbc.M513187200 CrossRefPubMedGoogle Scholar
  11. Kato K, Suzuki F, Ogasawara N (1988) Induction of S100 protein in 3T3–L1 cells during differentiation to adipocytes and its liberating by lipolytic hormones. Eur J Biochem 177:461–466. doi:10.1111/j.1432-1033.1988.tb14395.x CrossRefPubMedGoogle Scholar
  12. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556. doi:10.1210/jc.2004-0395 CrossRefPubMedGoogle Scholar
  13. Kirkland JL, Tchkonia T, Pirtskhalava T, Han J, Karagiannides I (2002) Adipogenesis and aging: does aging make fat go MAD? Exp Gerontol 37:757–767. doi:10.1016/S0531-5565(02)00014-1 CrossRefPubMedGoogle Scholar
  14. Lehrke M, Lazar MA (2005) The many faces of PPARgamma. Cell 123:993–999. doi:10.1016/j.cell.2005.11.026 CrossRefPubMedGoogle Scholar
  15. Lin Y, Lee H, Berg AH, Lisanti MP, Shapiro L, Scherer PE (2000) The lipopolysaccharide-activated toll-like receptor (TRL)-4 induces synthesis of the closely related receptor TRL-2 in adipocytes. J Biol Chem 275:24255–24263. doi:10.1074/jbc.M002137200 CrossRefPubMedGoogle Scholar
  16. Miller WH, Faust IM, Hirsch J (1984) Demonstration of de novo production of adipocytes in adult rats by biochemical and radioautographic techniques. J Lipid Res 25:336–347PubMedGoogle Scholar
  17. O’Shea Alvarez MS (1991) 3T3 cells in adipocytic conversion. Arch Invest Med (Mex) 22(2):235–244Google Scholar
  18. Olofsson LE, Orho-Melander M, William-Olsson L, Sjöholm K, Sjöström L, Groop L, Carlsson B, Carlsson LM, Olsson B (2008) C/EBPα in adipose tissue regulates genes in lipid and glucose metabolism and a genetic variation in C/EBPα is associated with serum level of triglycerides. J Clin Endocrinol Metab 93(12):4880–4886. doi:10.1210/jc.2008-0574 CrossRefPubMedGoogle Scholar
  19. Poulain-Godefroy O, Froguel P (2007) Preadipocyte response and impairment of differentiation in an inflammatory environment. Biochem Biophys Res Commun 356:662–667. doi:10.1016/j.bbrc.2007.03.053 CrossRefPubMedGoogle Scholar
  20. Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, Spiegelman BM (2002) C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes Dev 16:22–26. doi:10.1101/gad.948702 CrossRefPubMedGoogle Scholar
  21. Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116:1793–1801. doi:10.1172/JCI29069 CrossRefPubMedGoogle Scholar
  22. Skurk T, Alberti-Huber C, Herder C, Hauner H (2007) Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92:1023–1033. doi:10.1210/jc.2006-1055 CrossRefPubMedGoogle Scholar
  23. SPSS-X user’s guide (1986) 2nd ed. New York, McGraw-HillGoogle Scholar
  24. Weisberg S, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808PubMedGoogle Scholar
  25. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830PubMedGoogle Scholar
  26. Yu YH, Zhu H (2004) Chronological changes in metabolism and functions of cultured adipocytes: a hypothesis for cell aging in mature adipocytes. Am J Physiol Endocrinol Metab 286:E402–E410. doi:10.1152/ajpendo.00247.2003 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Elena Zoico
    • 1
  • Vincenzo Di Francesco
    • 1
  • Debora Olioso
    • 1
  • Anna Maria Fratta Pasini
    • 2
  • Anna Sepe
    • 1
  • Ottavio Bosello
    • 1
  • Saverio Cinti
    • 3
  • Luciano Cominacini
    • 2
  • Mauro Zamboni
    • 1
  1. 1.Division of Geriatric MedicineUniversity of VeronaVeronaItaly
  2. 2.Division of Internal MedicineUniversity of VeronaVeronaItaly
  3. 3.Institute of Normal Human MorphologyUniversity of Ancona (Politecnica delle Marche)AnconaItaly

Personalised recommendations