Advertisement

Biogerontology

, 10:323 | Cite as

Relationships between cancer and aging: a multilevel approach

  • Vladimir N. Anisimov
  • Ewa Sikora
  • Graham Pawelec
Review Article

Abstract

The incidence of cancer increases with age in humans and in laboratory animals alike. There are different patterns of age-related distribution of tumors in different organs and tissues. Aging may increase or decrease the susceptibility of various tissues to initiation of carcinogenesis and usually facilitates promotion and progression of carcinogenesis. Aging may predispose to cancer in two ways: tissue accumulation of cells in late stages of carcinogenesis and alterations in internal homeostasis, in particular, alterations in immune and endocrine systems. Increased susceptibility to the effects of tumor promoters is found both in aged animals and aged humans, as predicted by the multistage model of carcinogenesis. Aging is associated with a number of events at the molecular, cellular and physiological levels that influence carcinogenesis and subsequent cancer growth. An improved understanding of age-associated variables impacting on the tumor microenvironment, as well as the cancer cells themselves, will result in improved treatment modalities in geriatric oncology.

Keywords

Aging Carcinogenesis 

Notes

Acknowledgments

This paper evolved from discussions initiated at the The European Conference on Cancer and Aging—SeneCa, senescence and cancer—which took place in Warsaw, Poland between 4th and 6th October 2007, supported by the European Commission (contract LSSM-CT-2006-037312). For a summary of the main presentations at the conference, see Pawelec and Solana (2008). VA is supported by grant NS-5054.2006.4 from the President of The Russian Federation. ES was supported by the Ministry of Science and Higher Education (grant N301 008 32/0549).

References

  1. Alexandrov VA, Anisimov VN, Belous NM et al (1980) The inhibition of the transplacental blastomogenic effect of nitrosomethylurea by postnatal administration of buformin to rats. Carcinogenesis 1:975–978PubMedGoogle Scholar
  2. Anisimov VN (1983) Carcinogenesis and aging. Adv Cancer Res 40:265–324Google Scholar
  3. Anisimov VN (1987) Carcinogenesis and aging, vol 1 and 2. CRC, Boca RatonGoogle Scholar
  4. Anisimov VN (1994) The sole DNA damage induced by bromodeoxyuridine is sufficient for initiation of both aging and carcinogenesis in vivo. Ann N Y Acad Sci 719:494–501. doi: 10.1111/j.1749-6632.1994.tb56854.x PubMedGoogle Scholar
  5. Anisimov VN (1995) Effect of aging and interval between primary and secondary treatment in carcinogenesis induced by neonatal exposure to 5-bromodeoxyuridine and subsequent administration of N-nitrosomethylurea in rats. Mutat Res 316:173–187PubMedGoogle Scholar
  6. Anisimov VN (2003a) Insulin/IGF-1 signaling pathway driving aging and cancer as a target for pharmacological intervention. Exp Gerontol 38:1041–1049. doi: 10.1016/S0531-5565(03)00169-4 PubMedGoogle Scholar
  7. Anisimov VN (2003b) Molecular and physiological mechanisms of aging. Nauka, St. PetersburgGoogle Scholar
  8. Anisimov VN (2003c) The relationship between aging and carcinogenesis: a critical appraisal. Crit Rev Oncol Hematol 45:277–304. doi: 10.1016/S1040-8428(02)00121-X PubMedGoogle Scholar
  9. Anisimov VN (2006) Effect of host age on tumor growth rate in rodents. Front Biosci 11:412–422. doi: 10.2741/1808 PubMedGoogle Scholar
  10. Anisimov VN (2008) Antidiabetic drugs in aging and cancer: results and perspectives. Open Aging J 2:36–48Google Scholar
  11. Anisimov VN, Osipova GY (1992) Effect of neonatal exposure to 5-bromo-2′-deoxyuridine on life span, estrus function and tumor development in rats—an argument in favor of the mutation theory of aging? Mutat Res 275:97–110PubMedGoogle Scholar
  12. Anisimov VN, Zhukovskaya NV, Loktionov AS, Vakhtin YB (1988) Influence of host age on lung colony forming capacity of injected rat rhabdomyosarcoma cells. Cancer Lett 40:77–82. doi: 10.1016/0304-3835(88)90264-9 PubMedGoogle Scholar
  13. Anisimov VN, Zhukovskaya NV, Loktionov AS, Kamisnkaya E, Vakhtin YB (1995) Host and donor age dependency of colony forming capacity of lung-affine rat rhabdomyosarcoma RA-2 cells. Abstracts of the international conference on tumor microenvironment: progression, therapy and prevention. Tiberias, Israel:6Google Scholar
  14. Anisimov SV, Volkova MV, Lenskaya LV et al (2001) Age-associated accumulation of the Apolipoprotein C-III gene T-455C polymorphism C allele in a Russian population. J Gerontol Biol Sci 56A:B27–B32Google Scholar
  15. Anisimov VN, Semenchenko AV, Yashin AI (2003) Insulin and longevity: antidiabetic biguanides as geroprotectors. Biogerontology 4:297–307. doi: 10.1023/A:1026299318315 PubMedGoogle Scholar
  16. Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, Kovalenko IG, Poroshina TE, Semenchenko AV, Provinciali M, Re F, Franceschi C (2005a) Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp Gerontol 40:685–693. doi: 10.1016/j.exger.2005.07.007 PubMedGoogle Scholar
  17. Anisimov VN, Ukraintseva SV, Yashin AI (2005b) Cancer in rodents: does it tell us about cancer in humans? Nat Rev Cancer 5:807–819. doi: 10.1038/nrc1715 PubMedGoogle Scholar
  18. Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, Tyndyk ML, Yurova MV, Kovalenko IG, Poroshina TE, Semenchenko AV (2008) Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 7:2769–2773PubMedGoogle Scholar
  19. Arutjunyan AV, Kerkeshko GO, Anisimov VN et al (2001) Disturbances of diurnal rhythms of biogenic amines contents in hypothalamic nuclei as an evidence of neurotropic effects of enterotropic carcinogen 1,2-dimethylhydrazyine. Neuroendocr Lett 22:229–237Google Scholar
  20. Balducci L, Ershler WB (2005) Cancer and ageing: a nexus at several levels. Nat Rev Cancer 5:655–662. doi: 10.1038/nrc1675 PubMedGoogle Scholar
  21. Barbieri M, Rizzo MR, Manzella D et al (2003) Glucose regulation and oxidative stress in healthy centenarians. Exp Gerontol 38:137–143PubMedGoogle Scholar
  22. Bartke A, Chandrashekar V, Dominici F, Turyn D, Kinney B, Steger R, Kopchick JJ (2003) Insulin-like growth factor 1 (IGF-1) and aging: controversies and new insights. Biogerontology 4:1–8. doi: 10.1023/A:1022448532248 PubMedGoogle Scholar
  23. Bartsch C, Bartsch H, Blask D, Cardinali DP, Hrushevsky WJM, Mecke D (eds) (2001) The pineal galand and cancer. Springer, BerlinGoogle Scholar
  24. Barzilai N, Gupta G (1999) Interaction between aging and syndrome X: new insights on the pathophysiology of fat distribution. Ann N Y Acad Sci 892:58–72. doi: 10.1111/j.1749-6632.1999.tb07785.x PubMedGoogle Scholar
  25. Bataller M, Mendez C, Salas JA, Portugal J (2008) Mithramycin SK modulates polyploidy and cell death in colon carcinoma cells. Mol Cancer Ther 7:2988–2997. doi: 10.1158/1535-7163.MCT-08-0420 PubMedGoogle Scholar
  26. Berenblum I (1975) Sequential aspects of chemical carcinogenesis: skin. In: Becker J (ed) Cancer—a comprehensive treatise. Plenum, New York, pp 323–344Google Scholar
  27. Berns A (2002) Senescence: a companion in chemotherapy? Cancer Cell 1:309–311. doi: 10.1016/S1535-6108(02)00063-6 PubMedGoogle Scholar
  28. Berstein LM (2005) Clinical usage of hypolipidemic and antidiabetic drugs in the prevention and treatment of cancer. Cancer Lett 224:203–212. doi: 10.1016/j.canlet.2004.11.011 PubMedGoogle Scholar
  29. Berstein LM, Kvatchevskaya JO, Poroshina TE, Kovalenko IG, Tsyrlina EV, Zimarina TS, Ourmantcheeva AF, Ashrafian L, Thijssen JH (2004) Insulin resistance, its consequences for clinical course of the disease and possibilities of correction in endometrial cancer. J Cancer Res Clin Oncol 130:687–693PubMedGoogle Scholar
  30. Bluher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299:572–574PubMedGoogle Scholar
  31. Bordin P, Da Gol PG, Peruzzo P et al (1999) Causes of death and clinical diagnostic error in extreme aged hosptalized people: a retrospective clinical-necropsy survey. J Gerontol Med Sci 54A:M554–M559Google Scholar
  32. Bowker SL, Majumdar SR, Veugelers P, Johnson JA (2006) Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 29:254–258. doi: 10.2337/diacare.29.02.06.dc05-1558 PubMedGoogle Scholar
  33. Butov AA, Volkov MA, Anisimov VN, Sehl ME, Yashin AI (2002) A model of accelerated aging induced by 5-bromodeoxyuridine. Biogerontology 3:175–182. doi: 10.1023/A:1015647225196 PubMedGoogle Scholar
  34. Campisi J (2000) Cancer, aging, and cellular senescence. In Vivo 14:183–188PubMedGoogle Scholar
  35. Campisi J (2003) Cellular senescence and apoptosis: how cellularresponses might influenceaging phenotypes. Exp Gerontol 38:5–11. doi: 10.1016/S0531-5565(02)00152-3 PubMedGoogle Scholar
  36. Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522. doi: 10.1016/j.cell.2005.02.003 PubMedGoogle Scholar
  37. Campisi J, Kim S, Lim CS, Rubio M (2001) Cellular senescence, cancer and aging: the telomere connection. Exp Gerontol 36:1619–1637. doi: 10.1016/S0531-5565(01)00160-7 PubMedGoogle Scholar
  38. Chang BD, Xuan Y, Broude EV, Zhu H, Schott B, Fang J, Roninson IB (1999) Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 18:4808–4818. doi: 10.1038/sj.onc.1203078 PubMedGoogle Scholar
  39. Chiba T, Yamaza H, Higami Y, Shimokawa I (2002) Anti-aging effects of caloric restriction: involvement of neuroendocrine adaptation by peripheral signaling. Microsc Res Tech 59:317–324. doi: 10.1002/jemt.10211 PubMedGoogle Scholar
  40. Choi J, Shendrik I, Peacocke M (2000) Expression of senescence-associated beta-galactosidase in enlarged prostates from men with benign prostatic hyperplasia. Urology 56:160–166. doi: 10.1016/S0090-4295(00)00538-0 PubMedGoogle Scholar
  41. Colangelo LA, Gapstur SM, Gann PH (2002) Colorectal cancer mortality and factors related to the insulin resistance syndrome. Cancer Epidemiol Biomarkers Prev 11:385–391PubMedGoogle Scholar
  42. Coschigano KT, Clemmons D, Bellush LL, Kopchick JJ (2000) Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141:2608–2613PubMedGoogle Scholar
  43. Cristofalo VJ (2005) SA β Gal staining: biomarker or delusion. Exp Gerontol 40:836–838. doi: 10.1016/j.exger.2005.08.005 PubMedGoogle Scholar
  44. DePinho RA (2000) The age of cancer. Nature 408:248–254. doi: 10.1038/35041694 PubMedGoogle Scholar
  45. Derhovanessian E, Solana R, Larbi A, Pawelec G (2008) Immunity, ageing and cancer. Immun Ageing 15:11Google Scholar
  46. Dillin A, Crawford DK, Kenyon C (2002) Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298:830–834. doi: 10.1126/science.1074240 PubMedGoogle Scholar
  47. Dilman VM (1971) Age-associated elevation of hypothalamic threshold to feedback control and its role in development, aging and disease. Lancet 1:1211–1219. doi: 10.1016/S0140-6736(71)91721-1 PubMedGoogle Scholar
  48. Dilman VM (1994) Development, aging, and disease. A new rationale for and intervention strategy. Harwood, ChurGoogle Scholar
  49. Dilman VM, Anisimov VN (1979a) Hypothalamic mechanisms of ageing and of specific age pathology-I. Sensitivity threshold of hypothalamo-pituitary complex to homeostatic stimuli in the reproductive system. Exp Gerontol 14:161–174. doi: 10.1016/0531-5565(79)90015-9 PubMedGoogle Scholar
  50. Dilman VM, Anisimov VN (1979b) Potentiation of antitumor effect of cyclophosphamide and hydrazine sulfate by treatment with the antidiabetic agent, 1-phenylethylbiguanide (phenformin). Cancer Lett 7:357–361. doi: 10.1016/S0304-3835(79)80066-X PubMedGoogle Scholar
  51. Dilman VM, Anisimov VN (1980) Effect of treatment with phenofromin, dyphenylhydantoin or L-DOPA on life span and tumor incidence in C3H/Sn mice. Gerontology 26:241–245PubMedCrossRefGoogle Scholar
  52. Dimri GP (2005) What has senescence got to do with cancer? Cancer Cell 7:505–512. doi: 10.1016/j.ccr.2005.05.025 PubMedGoogle Scholar
  53. Dimri GP, Lee X, Basile G, Acosta M (1995) A novel biomarker identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367. doi: 10.1073/pnas.92.20.9363 PubMedGoogle Scholar
  54. Dirks AJ, Leeuwenburgh C (2005) Caloric restriction in humans: potential pitfalls and health concerns. Mech Ageing Dev 127:1–7. doi: 10.1016/j.mad.2005.09.001 PubMedGoogle Scholar
  55. Dix D, Cohen P (1999) On the role of aging in carcinogenesis. Anticancer Res 19:723–726PubMedGoogle Scholar
  56. Dix D, Cohen P, Flannery J (l980) On the role of aging in cancer incidence. J Theor Biol 83:163–173PubMedGoogle Scholar
  57. Dominici FP, Arosegui Diaz G, Bartke A (2000) Compensatory alterations of insulin signal transduction in liver of growth hormone receptor knockout mice. J Endocrinol 166:579–590. doi: 10.1677/joe.0.1660579 PubMedGoogle Scholar
  58. Dominici FP, Hauck S, Argention DP (2002) Increased insulin sensitivity and upregulation of insulin receptor, insulin receptor substrate (ISR)-1 and IRS-2 in liver of Ames dwarf mice. J Endocrinol 173:81–94. doi: 10.1677/joe.0.1730081 PubMedGoogle Scholar
  59. El Mir MY, Nogueira V, Fontaine E (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275:223–228. doi: 10.1074/jbc.275.1.223 PubMedGoogle Scholar
  60. Eom YW, Kim MA, Park SS, Goo MJ, Kwon HJ, Sohn S, Kim WH, Yoon G, Choi KS (2005) Two distinct modes of cell death induced by doxorubicin: apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype. Oncogene 24:4765–4777. doi: 10.1038/sj.onc.1208627 PubMedGoogle Scholar
  61. Erenpreisa J, Cragg MS (2007) Cancer: a matter of life cycle? Cell Biol Int 31:1507–1510. doi: 10.1016/j.cellbi.2007.08.013 PubMedGoogle Scholar
  62. Evans JMM, Donnely LA, Emslie-Smith AM (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330:1304–1305. doi: 10.1136/bmj.38415.708634.F7 PubMedGoogle Scholar
  63. Facchini FS, Hua NW, Reaven GM, Stoohs RA (2000) Hyperinsulinemia: the missing link among oxidative stress and age-related diseases? Free Radic Biol Med 29:1302–1306. doi: 10.1016/S0891-5849(00)00438-X PubMedGoogle Scholar
  64. Flurkey K, Papaconstantinou J, Miller RA, Harrison DE (2001) Life-span extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci USA 98:6736–6741PubMedGoogle Scholar
  65. Fruehwald-Schultes B, Oltmanns KM, Toschek B (2002) Short-term treatment with metformin decreases serum leptin concentration without affecting body weight and body fat content in normal-weight healthy men. Metabolism 51:531–536. doi: 10.1053/meta.2002.31332 PubMedGoogle Scholar
  66. Gargiulo P, Caccese D, Pignatelli P et al (2002) Metformin decreases platelet superoxide anion production in diabetic patients. Diabetes Metab Res Rev 18:156–159PubMedGoogle Scholar
  67. Gravekamp C, Kim SH, Castro F (2008) Cancer vaccination: manipulation of immune responses at old age. Mech Ageing Dev. doi: 10.1016/j.mad.2008.05.003
  68. Gupta K, Krishnaswamy G, Karnad A, Peiris AN (2002) Insulin: a novel factor in carcinogenesis. Am J Med Sci 323:140–145PubMedGoogle Scholar
  69. Hahn WC, Weinberg RA (2002) Modeling the molecular circuitry of cancer. Nat Rev Cancer 2:331–341. doi: 10.1038/nrc795 PubMedGoogle Scholar
  70. Hamilton ML, Van Remmen H, Drake JA (2001) Does oxidative damage to DNA increase with age? Proc Natl Acad Sci USA 98:10469–10474. doi: 10.1073/pnas.171202698 PubMedGoogle Scholar
  71. Han Z, Wei W, Dunaway S, Darnowski JW, Calabresi P, Sedivy J, Hendrickson EA, Balan KV, Pantazis P, Wyche JH (2002) Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J Biol Chem 277:17154–17160. doi: 10.1074/jbc.M112401200 PubMedGoogle Scholar
  72. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedGoogle Scholar
  73. Harman D (1998) Extending functional life span. Exp Gerontol 33:95–112. doi: 10.1159/000028983 PubMedGoogle Scholar
  74. Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311:1257. doi: 10.1126/science.1122446 PubMedGoogle Scholar
  75. Holzenberger M, Dupond J, Ducos B (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187. doi: 10.1038/nature01298 PubMedGoogle Scholar
  76. Hsieh CC, DeFord JH, Flurkey K (2002a) Effects of the Pit1 mutation on the insulin signaling pathway: implications on the longevity of the long-lived Snell dwarf mouse. Mech Ageing Dev 123:1245–1255. doi: 10.1016/S0047-6374(02)00037-4 PubMedGoogle Scholar
  77. Hsieh CC, DeFord JH, Flurkey K et al (2002b) Implications for the insulin signaling pathway in Snell dwarf mouse longevity: a similarity with the C. elegans longevity paradigm. Mech Ageing Dev 123:1229–1244PubMedGoogle Scholar
  78. Hu M, Polyak K (2008) Microenvironmental regulation of cancer development. Curr Opin Genet Dev 18:27–34. doi: 10.1016/j.gde.2007.12.006 PubMedGoogle Scholar
  79. Ikeno Y, Bronson RT, Hubbard GB (2003) Delayed occurrence of fatal neoplastic diseases in Ames dwarf mice: correlation to extended longevity. J Gerontol A Biol Sci Med Sci 58:B291–B296Google Scholar
  80. Itahana K, Campisi J, Dimri GP (2004) Mechanisms of cellular senescence in huma and mouse cells. Biogerontology 5:1–10. doi: 10.1023/B:BGEN.0000017682.96395.10 PubMedGoogle Scholar
  81. Jackson JG, Pereira-Smith OM (2006) Primary and compensatory roles for RB family members at cell cycle gene promoters that are deacetylated and downregulated in doxorubicin-induced senescence of breast cancer cells. Mol Cell Biol 26:2501–2510. doi: 10.1128/MCB.26.7.2501-2510.2006 PubMedGoogle Scholar
  82. Kawanishi S, Hiraki Y, Oikawa S (2001) Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. Mutat Res 488:65–67. doi: 10.1016/S1383-5742(00)00059-4 PubMedGoogle Scholar
  83. Kenyon C (2001) A conserved regulatory system for aging. Cell 105:165–168PubMedGoogle Scholar
  84. Kim JH, Kim JH, Lee GE, Kim SW, Chung IK (2003) Identification of a quinoxaline derivative that is a potent telomerase inhibitor leading to cellular senescence of human cancer cells. Biochem J 373:523–529. doi: 10.1042/BJ20030363 PubMedGoogle Scholar
  85. Krtolica A, Parinello S, Locckett S, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 98:12072–12077. doi: 10.1073/pnas.211053698 PubMedGoogle Scholar
  86. Lane MA, Tilmont EM, De Angelis H (2000) Short-term calorie restriction improves disease-related markers in older male rhesus monkeys (Macaca mulatta). Mech Ageing Dev 112:185–196. doi: 10.1016/S0047-6374(99)00087-1 PubMedGoogle Scholar
  87. Lee J, Chan SL, Lane MA, Mattson MP (2002) Phenformin suppresses calcium responses to glutamate and protects hippocampal neurons against excitotoxicity. Exp Neurol 175:161–167. doi: 10.1006/exnr.2002.7864 PubMedGoogle Scholar
  88. Lipman RD, Dallal GE, Bronson RT (1999a) Lesion biomarkers of aging in B6C3F1 hybrid mice. J Gerontol Med Sci 54A:466–477Google Scholar
  89. Lipman RD, Dallal GE, Bronson RT (1999b) Effect of genotype and diet on age-related lesions in ad libitum fed and calorie-restricted F344, BN, and BNF3F1 rats. J Gerontol Med Sci 54A:478–491Google Scholar
  90. Mattson MP, Duan W, Lee J et al (2001) Progress in the development of caloric restriction mimetic dietary supplements. J Anti-Aging Med 4:225–232Google Scholar
  91. McCullough KD, Coleman WB, Smith GJ, Grisham JW (1994) Age-dependent regulation of the tumorigenic potential of neoplastically transformed rat liver epithelial cells by the liver micro- environment. Cancer Res 54:3668–3671PubMedGoogle Scholar
  92. Michishita E, Nakabayashi K, Suzuki T (1999) 5-bromodeoxyuridine induces senescence-like phenomena in mammalian cells regardless of cell type or species. J Biochem 125:1052–1059Google Scholar
  93. Mick GJ, Wang X, Ling FC, McCormick KL (2000) Inhibition of leptin secretion by insulin and metformin in cultured rat adipose tissue. Biochim Biophys Acta 1502:426–432PubMedGoogle Scholar
  94. Mikhnin AE, Barchuk AS, Wagner RI (2004) Kinetics of visual growth of skin melanoma. Russ Oncol J 2:29–32Google Scholar
  95. Miller RA (1991) Gerontology as oncology. Cancer 68:2496–2501. doi: 10.1002/1097-0142(19911201)68:11+<2496∷AID-CNCR2820681503>3.0.CO;2-B PubMedGoogle Scholar
  96. Minagawa S, Nakabayashi K, Fujii M et al (2004) Functional and chromosomal clustering of genes responsive to 5-bromodeoxyuridine in human cells. Exp Gerontol 39:1069–1078PubMedGoogle Scholar
  97. Minagawa S, Nakabayashi K, Fujii M (2005) Early BrdU-resposive genes constitute a novel class of senescence-asscoiated genes in human cells. Exp Cell Res 304:552–558. doi: 10.1016/j.yexcr.2004.10.036 PubMedGoogle Scholar
  98. Mishima K, Handa JT, Aotaki-Keen A (1999) Senescence-associated beta-galactosidase histochemistry for the primate eye. Investig Ophralmol Vis Sci 40:1590–1593Google Scholar
  99. Moolgavkar S, Krewski D, Zeise L (eds) (1999) Quantitative estimation and prediction of human cancer risk. IARC Sci Publ No 131. IARC, LyonGoogle Scholar
  100. Morris SH (1991) The genetic toxicology of 5-bromodeoxyuridine in mammalian cells. Mutat Res 258:161–188PubMedGoogle Scholar
  101. Muntoni S (1999) Metformin and fatty acids. Diabetes Care 22:179–180PubMedGoogle Scholar
  102. Napalkov NP (2004) Cancer and demographic transition. Vopr Onkol 50:127–144PubMedGoogle Scholar
  103. Napalkov NP, Anisimov VN, Likhachev AJ, Tomatis L (1989) 5-bromodeoxyuridine- induced carcinogenesis and its modification by persistent estrus syndrome, unilateral nephrectomy, and X-irradiation in rats. Cancer Res 49:318–323PubMedGoogle Scholar
  104. Narita M, Lowe SW (2005) Senescence comes of age. Nat Med 11:920–922. doi: 10.1038/nm0905-920 PubMedGoogle Scholar
  105. Niculescu AB, Chen X, Smeets M, Hengst L, Prives C, Reed SI (1998) Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 18:629–643PubMedGoogle Scholar
  106. Ota H, Tokunaga E, Chang K, Hikasa M, Iijima K, Eto M, Kozaki K, Akishita M, Ouchi Y, Kaneki M (2006) Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 25:176–185PubMedGoogle Scholar
  107. Paolisso G, Amato L, Eccellente R et al (1998) Effect of metformin on food intake in obese subjects. Eur J Clin Invest 28:441–446. doi: 10.1046/j.1365-2362.1998.00304.x PubMedGoogle Scholar
  108. Paradis V, Youssef N, Dargere D (2001) Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum Pathol 32:327–332. doi: 10.1053/hupa.2001.22747 PubMedGoogle Scholar
  109. Parkin DM, Bray FI, Devesa SS (2001) Cancer burden in the year 2000. The global picture. Eur J Cancer 37(Suppl 8):S4–S66. doi: 10.1016/S0959-8049(01)00267-2 PubMedGoogle Scholar
  110. Pawelec G, Solana R (2008) Are cancer and ageing different sides of the same coin? Conference on cancer and ageing. EMBO Rep 9:234–238. doi: 10.1038/embor.2008.12 PubMedGoogle Scholar
  111. Pawelec G, Koch S, Griessemann H, Rehbein A, Hähnel K, Gouttefangeas C (2006) Immunosenescence, suppression and tumour progression. Cancer Immunol Immunother 55:981–986. doi: 10.1007/s00262-005-0109-3 PubMedGoogle Scholar
  112. Peto R, Parish SE, Gray RG (1985) There is no such thing as ageing, and cancer is not related to it, 58. In: Likhachev A, Anisimov V, Montesano R (eds) Age-related factors in carcinogenesis. IARC, Lyon, pp 43–53Google Scholar
  113. Ponten J (1977) Abnormal cell growth (neoplasia} and aging. In: Finch CE, Hayflick L (eds) Handbook of the biology of aging. van Nostrand Reinhold Co, New York, pp 536–560Google Scholar
  114. Puig PE, Guilly MN, Bouchot A, Droin N, Cathelin D, Bouyer F, Favier L, Ghiringhelli F, Kroemer G, Solary E, Martin F, Chauffert B (2008) Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol Int 32(9):1031–1043PubMedGoogle Scholar
  115. Rangarajan A, Weinberg RA (2003) Comparative biology of mouse versus human cells: modelling human cancer in mice. Nat Rev Cancer 3:952–959. doi: 10.1038/nrc1235 PubMedGoogle Scholar
  116. Rebbaa A, Zheng X, Chu F, Mirkin BL (2006) The role of histone acetylation versus DNA damage in drug-induced senescence and apoptosis. Cell Death Differ 13:1960–1967. doi: 10.1038/sj.cdd.4401895 PubMedGoogle Scholar
  117. Ressler S, Bartkova J, Niederegger H, Bartek J, Scharffetter-Kochanek K, Jansen-Dürr P, Wlaschek M (2006) p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5:379–389. doi: 10.1111/j.1474-9726.2006.00231.x PubMedGoogle Scholar
  118. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111. doi: 10.1038/35102167 PubMedGoogle Scholar
  119. Richards JS, Russell DL, Ochsner S (2002) Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent Prog Horm Res 57:195–220. doi: 10.1210/rp.57.1.195 PubMedGoogle Scholar
  120. Roberson RS, Kussick SJ, Vallieres E, Chen SY, Wu DY (2005) Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res 65:2795–2803. doi: 10.1158/0008-5472.CAN-04-1270 PubMedGoogle Scholar
  121. Roninson IB (2003) Tumor cell senescence in cancer treatment. Cancer Res 63:2705–2715PubMedGoogle Scholar
  122. Roth GS, Lane MA, Ingram D et al (2002) Biomarkers of caloric restriction may predict longevity in humans. Science 297:811PubMedGoogle Scholar
  123. Ruiz-Torres A, Soares de Melo Kirzner M (2002) Ageing and longevity are related to growth hormone/insulin-like growth factor-1 secretion. Gerontology 48:401–407PubMedGoogle Scholar
  124. Schmitt CA, Fridman JS, Yang M (2002) A senescent program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109:335–346. doi: 10.1016/S0092-8674(02)00734-1 PubMedGoogle Scholar
  125. Schneider MB, Matsuzaki H, Harorah J (2001) Prevention of pancreatic cancer induction in hamsters by metformin. Gastroenterology 120:1263–1270. doi: 10.1053/gast.2001.23258 PubMedGoogle Scholar
  126. Shay JW, Roninson IB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23:2919–2933. doi: 10.1038/sj.onc.1207518 PubMedGoogle Scholar
  127. Shimokawa I, Higami Y, Utsuyama M et al (2002) Life span extension by reducing in growth hormone-insulin-growth factor-1 axis in a transgenic rat model. Am J Pathol 160:2259–2265PubMedGoogle Scholar
  128. Simpson AJG (1993) A natural somatic mutation frequency and human carcinogenesis. Adv Cancer Res 71:209–240. doi: 10.1016/S0065-230X(08)60100-1 Google Scholar
  129. Singer B, Grunberger D (1983) Molecular Biology of Mutagens and Carcinogens. Plenum, New YorkGoogle Scholar
  130. Sliwinska MA, Mosieniak G, Wolanin K, Babik A, Piwocka K, Magalska A, Szczepanowska J, Fronk J, Sikora E (2008) Induction of senescence with doxorubicin leads to increased genomic instability of HCT116 cells. Mech Ageing Dev (in press)Google Scholar
  131. Spindler SR (2006) Use of microarray biomarkers to identify longevity therapeutics. Aging Cell 5:39–50. doi: 10.1111/j.1474-9726.2006.00194.x PubMedGoogle Scholar
  132. Srinivasan SV, Mayhew CN, Schwemberger S, Zagorski W, Knudsen ES (2007) RB loss promotes aberrant ploidy by deregulating levels and activity of DNA replication factors. J Biol Chem 282:23867–23877. doi: 10.1074/jbc.M700542200 PubMedGoogle Scholar
  133. Staats J (1980) Standardized nomenclature for inbred strains of mice: seventh listing. Cancer Res 40:2083–2128PubMedGoogle Scholar
  134. Storchova Z, Pellman D (2004) From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 5:45–54. doi: 10.1038/nrm1276 PubMedGoogle Scholar
  135. Sundaram M, Guernsey DL, Rajaraman MM, Rajaraman R (2004) Neosis: a novel type of cell division in cancer. Cancer Biol Ther 3:207–218PubMedGoogle Scholar
  136. Suzuki T, Minagawa S, Michishita E et al (2001) Induction of senescence-associated genes by 5-bromodeoxyuridine in HeLa cells. Exp Gerontol 36:465–474. doi: 10.1016/S0531-5565(00)00223-0 PubMedGoogle Scholar
  137. Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299:1346–1351PubMedGoogle Scholar
  138. te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62:1876–1883PubMedGoogle Scholar
  139. Tomatis L (ed) (1990) Cancer: causes, occurence and control. IARC Sci Publ No100. IARC, LyonGoogle Scholar
  140. Touitou Y (2001) Human aging and melatonin. Clinical relevance. Exp Gerontol 36:1083–1100PubMedGoogle Scholar
  141. Toyokuni SM (2008) Molecular mechanisms of oxidative stress-induced carcinogfenesis: from epidemiology to oxygenomics. IUBMB Life 60:441–447. doi: 10.1002/iub.61 PubMedGoogle Scholar
  142. Ulrich P, Cerami A (2001) Protein glycation, diabetes, and aging. Recent Progr Horm Res 56:1–21PubMedGoogle Scholar
  143. Vasile E, Tomita Y, Brown LF (2001) Differential expression of thymosin beta-1- by early passage and senescent vascular endothelium is modulated by VPF/VEGF: evidence for senescent endothelial cells in vivo at sited of atherosclerosis. FASEB J 15:6449–6465. doi: 10.1096/fj.00-0051com Google Scholar
  144. Vijg J, Campisi J (2008) Puzzles, promises and a cure for ageing. Nature 454:1065–1071PubMedGoogle Scholar
  145. Vogel C, Kienitz A, Hofmann I, Muller R, Bastians H (2004) Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Oncogene 23:6845–6853. doi: 10.1038/sj.onc.1207860 PubMedGoogle Scholar
  146. von Wangenheim KH, Peterson HP (1998) Control of cell proliferation by progress in differentiation: clues to mechanisms of aging, cancer causation and therapy. J Theor Biol 193:663–678. doi: 10.1006/jtbi.1998.0731 Google Scholar
  147. von Zglinicki T, Burkle A, Kirkwood TBL (2001) DNA damage and ageing—an integrative approach. Exp Gerontol 36:1049–1062. doi: 10.1016/S0531-5565(01)00111-5 Google Scholar
  148. Walter S, Boley G, Bühring H-J, Koch S, Wernet D, Zippelius A, Pawelec G, Romero P, Stevanović S, Rammensee H-G, Gouttefangeas C (2005) High frequencies of functionally impaired cytokeratin 18-specific CD8+ T cells in healthy HLA-A2+ donors. Eur J Immunol 35:2876–2885. doi: 10.1002/eji.200526207 PubMedGoogle Scholar
  149. Ward JM (1983) Background data and variations in tumor rates of control rats and mice. Prog Exp Tumor Res 26:241–264PubMedGoogle Scholar
  150. Ward JM, Henneman JR, Osipova GY, Anisimov VN (1991) Persistence of 5-bromo-2′-deoxyuridine in tissues of rats after exposure in early life. Toxicology 70:345–352. doi: 10.1016/0300-483X(91)90008-O PubMedGoogle Scholar
  151. Weinberg RA (2008) Mechanisms of malignant progression. Carcinogenesis 29:1092–1095. doi: 10.1093/carcin/bgn104 PubMedGoogle Scholar
  152. Weindruch R, Sohal RS (1997) Caloric intake and aging. N Engl J Med 337:986–994. doi: 10.1056/NEJM199710023371407 PubMedGoogle Scholar
  153. Wu Y, Yakar S, Zhao L, Hennighausen L et al (2002) Circulating insulin-like growth factor-I levels regulate colon cancer growth and metastasis. Cancer Res 62:1030–1035PubMedGoogle Scholar
  154. Xu WS, Perez G, Ngo L, Gui CY, Marks PA (2005) Induction of polyploidy by histone deacetylase inhibitor: a pathway for antitumor effects. Cancer Res 65:7832–7839. doi: 10.1158/0008-5472.CAN-04-4313 PubMedGoogle Scholar
  155. Zhou G, Myers R, Li Y (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Vladimir N. Anisimov
    • 1
  • Ewa Sikora
    • 2
  • Graham Pawelec
    • 3
  1. 1.Department of Carcinogenesis and OncogerontologyN. N. Petrov Research Institute of OncologySt. PetersburgRussia
  2. 2.NENCKI Institute of Experimental BiologyWarsawPoland
  3. 3.Center for Medical ResearchUniversity of Tübingen Medical SchoolTübingenGermany

Personalised recommendations