Biogerontology

, Volume 10, Issue 3, pp 235–252 | Cite as

Roles of RECQ helicases in recombination based DNA repair, genomic stability and aging

  • Dharmendra Kumar Singh
  • Byungchan Ahn
  • Vilhelm A. Bohr
Research Article

Abstract

The maintenance of the stability of genetic material is an essential feature of every living organism. Organisms across all kingdoms have evolved diverse and highly efficient repair mechanisms to protect the genome from deleterious consequences of various genotoxic factors that might tend to destabilize the integrity of the genome in each generation. One such group of proteins that is actively involved in genome surveillance is the RecQ helicase family. These proteins are highly conserved DNA helicases, which have diverse roles in multiple DNA metabolic processes such as DNA replication, recombination and DNA repair. In humans, five RecQ helicases have been identified and three of them namely, WRN, BLM and RecQL4 have been linked to genetic diseases characterized by genome instability, premature aging and cancer predisposition. This helicase family plays important roles in various DNA repair pathways including protecting the genome from illegitimate recombination during chromosome segregation in mitosis and assuring genome stability. This review mainly focuses on various roles of human RecQ helicases in the process of recombination-based DNA repair to maintain genome stability and physiological consequences of their defects in the development of cancer and premature aging.

Keywords

Genome stability RecQ helicases Homologous recombination (HR) Double strand break (DSB) Non-homologous end joining (NHEJ) 

References

  1. Adams MD, McVey M, Sekelsky JJ (2003) Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science 299:265–267PubMedCrossRefGoogle Scholar
  2. Akkari YM, Bateman RL, Reifsteck CA, Olson SB, Grompe M (2000) DNA replication is required to elicit cellular responses to psoralen-induced DNA interstrand cross-links. Mol Cell Biol 20:8283–8289. doi:10.1128/MCB.20.21.8283-8289.2000 PubMedCrossRefGoogle Scholar
  3. Anbari KK, Ierardi-Curto LA, Silber JS, Asada N, Spinner N, Zackai EH, Belasco J, Morrissette JD, Dormans JP (2000) Two primary osteosarcomas in a patient with Rothmund–Thomson syndrome. Clin Orthop Relat Res 378:213–223. doi:10.1097/00003086-200009000-00032 Google Scholar
  4. Bachrati CZ, Hickson ID (2003) RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem J 374:577–606. doi:10.1042/BJ20030491 PubMedCrossRefGoogle Scholar
  5. Bachrati CZ, Hickson ID (2008) RecQ helicases: guardian angels of the DNA replication fork. Chromosoma 117:219–233. doi:10.1007/s00412-007-0142-4 PubMedCrossRefGoogle Scholar
  6. Baird DM, Davis T, Rowson J, Jones CJ, Kipling D (2004) Normal telomere erosion rates at the single cell level in Werner syndrome fibroblast cells. Hum Mol Genet 13:1515–1524. doi:10.1093/hmg/ddh159 PubMedCrossRefGoogle Scholar
  7. Baynton K, Otterlei M, Bjoras M, von Kobbe C, Bohr VA, Seeberg E (2003) WRN interacts physically and functionally with the recombination mediator protein RAD52. J Biol Chem 278:36476–36486. doi:10.1074/jbc.M303885200 PubMedCrossRefGoogle Scholar
  8. Beamish H, Kedar P, Kaneko H, Chen P, Fukao T, Peng C, Beresten S, Gueven N, Purdie D, Lees-Miller S, Ellis N, Kondo N, Lavin MF (2002) Functional link between BLM defective in Bloom’s syndrome and the ataxia-telangiectasia-mutated protein, ATM. J Biol Chem 277:30515–30523. doi:10.1074/jbc.M203801200 PubMedCrossRefGoogle Scholar
  9. Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622PubMedCrossRefGoogle Scholar
  10. Bohr VA, Souza Pinto N, Nyaga SG, Dianov G, Kraemer K, Seidman MM, Brosh RM Jr (2001) DNA repair and mutagenesis in Werner syndrome. Environ Mol Mutagen 38:227–234. doi:10.1002/em.1076 PubMedCrossRefGoogle Scholar
  11. Braybrooke JP, Li JL, Wu L, Caple F, Benson FE, Hickson ID (2003) Functional interaction between the Bloom’s syndrome helicase and the RAD51 paralog, RAD51L3 (RAD51D). J Biol Chem 278:48357–48366. doi:10.1074/jbc.M308838200 PubMedCrossRefGoogle Scholar
  12. Brosh RM Jr, Bohr VA (2007) Human premature aging, DNA repair and RecQ helicases. Nucleic Acids Res 35:7527–7544. doi:10.1093/nar/gkm1008 PubMedCrossRefGoogle Scholar
  13. Bugreev DV, Yu X, Egelman EH, Mazin AV (2007) Novel pro- and anti-recombination activities of the Bloom’s syndrome helicase. Genes Dev 21:3085–3094. doi:10.1101/gad.1609007 PubMedCrossRefGoogle Scholar
  14. Bugreev DV, Brosh RM Jr, Mazin AV (2008) RECQ1 possesses DNA branch migration activity. J Biol Chem 283:20231–20242. doi:10.1074/jbc.M801582200 PubMedCrossRefGoogle Scholar
  15. Bussen W, Raynard S, Busygina V, Singh AK, Sung P (2007) Holliday junction processing activity of the BLM-topo IIIalpha-BLAP75 complex. J Biol Chem 282:31484–31492. doi:10.1074/jbc.M706116200 PubMedCrossRefGoogle Scholar
  16. Cabral RE, Queille S, Bodemer C, de Prost Y, Neto JB, Sarasin A, Daya-Grosjean L (2008) Identification of new RECQL4 mutations in Caucasian Rothmund–Thomson patients and analysis of sensitivity to a wide range of genotoxic agents. Mutat Res 643:41–47. doi:10.1016/j.mrfmmm.2008.06.002 PubMedGoogle Scholar
  17. Celli GB, Denchi EL, de Lange T (2006) Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat Cell Biol 8:885–890. doi:10.1038/ncb1444 PubMedCrossRefGoogle Scholar
  18. Chaganti RS, Schonberg S, German J (1974) A manyfold increase in sister chromatid exchanges in Bloom’s syndrome lymphocytes. Proc Natl Acad Sci USA 71:4508–4512PubMedCrossRefGoogle Scholar
  19. Chakraverty RK, Hickson ID (1999) Defending genome integrity during DNA replication: a proposed role for RecQ family helicases. Bioessays 21:286–294. doi:10.1002/(SICI)1521-1878(199904)21:4<286::AID-BIES4>3.0.CO;2-ZPubMedCrossRefGoogle Scholar
  20. Cheng WH, von Kobbe C, Opresko PL, Arthur LM, Komatsu K, Seidman MM, Carney JP, Bohr VA (2004) Linkage between Werner syndrome protein and the Mre11 complex via Nbs1. J Biol Chem 279:21169–21176. doi:10.1074/jbc.M312770200 PubMedCrossRefGoogle Scholar
  21. Cheng WH, Kusumoto R, Opresko PL, Sui X, Huang S, Nicolette ML, Paull TT, Campisi J, Seidman M, Bohr VA (2006) Collaboration of Werner syndrome protein and BRCA1 in cellular responses to DNA interstrand cross-links. Nucleic Acids Res 34:2751–2760. doi:10.1093/nar/gkl362 PubMedCrossRefGoogle Scholar
  22. Cheng WH, Muftic D, Muftuoglu M, Dawut L, Morris C, Helleday T, Shiloh Y, Bohr VA (2008) WRN is required for ATM Activation and the S-phase checkpoint in response to interstrand crosslink-induced DNA double strand breaks. Molecular biology of the cell. Mol Biol Cell 19:3923–3933Google Scholar
  23. Choi D, Whittier PS, Oshima J, Funk WD (2001) Telomerase expression prevents replicative senescence but does not fully reset mRNA expression patterns in Werner syndrome cell strains. FASEB J 15:1014–1020. doi:10.1096/fj.00-0104com PubMedCrossRefGoogle Scholar
  24. Constantinou A, Tarsounas M, Karow JK, Brosh RM, Bohr VA, Hickson ID, West SC (2000) Werner’s syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep 1:80–84. doi:10.1093/embo-reports/kvd004 PubMedCrossRefGoogle Scholar
  25. Cooper MP, Machwe A, Orren DK, Brosh RM, Ramsden D, Bohr VA (2000) Ku complex interacts with and stimulates the Werner protein. Genes Dev 14:907–912PubMedGoogle Scholar
  26. Cox LS, Faragher RG (2007) From old organisms to new molecules: integrative biology and therapeutic targets in accelerated human ageing. Cell Mol Life Sci 64:2620–2641. doi:10.1007/s00018-007-7123-x PubMedCrossRefGoogle Scholar
  27. Davalos AR, Kaminker P, Hansen RK, Campisi J (2004) ATR and ATM-dependent movement of BLM helicase during replication stress ensures optimal ATM activation and 53BP1 focus formation. Cell Cycle 3:1579–1586PubMedGoogle Scholar
  28. Davies SL, North PS, Dart A, Lakin ND, Hickson ID (2004) Phosphorylation of the Bloom’s syndrome helicase and its role in recovery from S-phase arrest. Mol Cell Biol 24:1279–1291. doi:10.1128/MCB.24.3.1279-1291.2004 PubMedCrossRefGoogle Scholar
  29. de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110. doi:10.1101/gad.1346005 PubMedCrossRefGoogle Scholar
  30. De Silva IU, McHugh PJ, Clingen PH, Hartley JA (2000) Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol 20:7980–7990. doi:10.1128/MCB.20.21.7980-7990.2000 PubMedCrossRefGoogle Scholar
  31. Der Kaloustian VM, McGill JJ, Vekemans M, Kopelman HR (1990) Clonal lines of aneuploid cells in Rothmund–Thomson syndrome. Am J Med Genet 37:336–339. doi:10.1002/ajmg.1320370308 PubMedCrossRefGoogle Scholar
  32. Du X, Shen J, Kugan N, Furth EE, Lombard DB, Cheung C, Pak S, Luo G, Pignolo RJ, DePinho RA, Guarente L, Johnson FB (2004) Telomere shortening exposes functions for the mouse Werner and Bloom syndrome genes. Mol Cell Biol 24:8437–8446. doi:10.1128/MCB.24.19.8437-8446.2004 PubMedCrossRefGoogle Scholar
  33. Durand F, Castorina P, Morant C, Delobel B, Barouk E, Modiano P (2002) Rothmund–Thomson syndrome, trisomy 8 mosaicism and RECQ4 gene mutation. Ann Dermatol Venereol 129:892–895PubMedGoogle Scholar
  34. Eller MS, Liao X, Liu S, Hanna K, Backvall H, Opresko PL, Bohr VA, Gilchrest BA (2006) A role for WRN in telomere-based DNA damage responses. Proc Natl Acad Sci USA 103:15073–15078. doi:10.1073/pnas.0607332103 PubMedCrossRefGoogle Scholar
  35. Epstein CJ, Martin GM, Motulsky AG (1965) Werner’s syndrome; caricature of aging. A genetic model for the study of degenerative diseases. Trans Assoc Am Physicians 78:73–81PubMedGoogle Scholar
  36. Fan W, Luo J (2008) RecQ4 facilitates UV-induced DNA damage repair through interaction with nucleotide excision repair factor XPA. J Biol Chem 283:29037–29044 Google Scholar
  37. Faragher RG, Kill IR, Hunter JA, Pope FM, Tannock C, Shall S (1993) The gene responsible for Werner syndrome may be a cell division “counting” gene. Proc Natl Acad Sci USA 90:12030–12034. doi:10.1073/pnas.90.24.12030 PubMedCrossRefGoogle Scholar
  38. Franchitto A, Pichierri P (2002) Protecting genomic integrity during DNA replication: correlation between Werner’s and Bloom’s syndrome gene products and the MRE11 complex. Hum Mol Genet 11:2447–2453. doi:10.1093/hmg/11.20.2447 PubMedCrossRefGoogle Scholar
  39. Franchitto A, Pichierri P (2004) Werner syndrome protein and the MRE11 complex are involved in a common pathway of replication fork recovery. Cell Cycle 3:1331–1339PubMedGoogle Scholar
  40. Fukuchi K, Martin GM, Monnat RJ Jr (1989) Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc Natl Acad Sci USA 86:5893–5897. doi:10.1073/pnas.86.15.5893 PubMedCrossRefGoogle Scholar
  41. Fukuchi K, Tanaka K, Kumahara Y, Marumo K, Pride MB, Martin GM, Monnat RJ Jr (1990) Increased frequency of 6-thioguanine-resistant peripheral blood lymphocytes in Werner syndrome patients. Hum Genet 84:249–252. doi:10.1007/BF00200569 PubMedCrossRefGoogle Scholar
  42. German J (1995) Bloom’s syndrome. Dermatol Clin 13:7–18PubMedGoogle Scholar
  43. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514. doi:10.1016/S0092-8674(00)80760-6 PubMedCrossRefGoogle Scholar
  44. Hanada K, Hickson ID (2007) Molecular genetics of RecQ helicase disorders. Cell Mol Life Sci 64:2306–2322. doi:10.1007/s00018-007-7121-z PubMedCrossRefGoogle Scholar
  45. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460. doi:10.1038/345458a0 PubMedCrossRefGoogle Scholar
  46. Hashimoto Y, Takisawa H (2003) Xenopus Cut5 is essential for a CDK-dependent process in the initiation of DNA replication. EMBO J 22:2526–2535. doi:10.1093/emboj/cdg238 PubMedCrossRefGoogle Scholar
  47. Hickson ID (2003) RecQ helicases: caretakers of the genome. Nat Rev Cancer 3:169–178. doi:10.1038/nrc1012 PubMedCrossRefGoogle Scholar
  48. Hoehn H, Bryant EM, Au K, Norwood TH, Boman H, Martin GM (1975) Variegated translocation mosaicism in human skin fibroblast cultures. Cytogenet Cell Genet 15:282–298. doi:10.1159/000130526 PubMedCrossRefGoogle Scholar
  49. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374. doi:10.1038/35077232 PubMedCrossRefGoogle Scholar
  50. Hu P, Beresten SF, van Brabant AJ, Ye TZ, Pandolfi PP, Johnson FB, Guarente L, Ellis NA (2001) Evidence for BLM and topoisomerase IIIalpha interaction in genomic stability. Hum Mol Genet 10:1287–1298. doi:10.1093/hmg/10.12.1287 PubMedCrossRefGoogle Scholar
  51. Hu Y, Lu X, Barnes E, Yan M, Lou H, Luo G (2005) Recql5 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossovers. Mol Cell Biol 25:3431–3442. doi:10.1128/MCB.25.9.3431-3442.2005 PubMedCrossRefGoogle Scholar
  52. Hu Y, Raynard S, Sehorn MG, Lu X, Bussen W, Zheng L, Stark JM, Barnes EL, Chi P, Janscak P, Jasin M, Vogel H, Sung P, Luo G (2007) RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev 21:3073–3084. doi:10.1101/gad.1609107 PubMedCrossRefGoogle Scholar
  53. Huang P, Pryde FE, Lester D, Maddison RL, Borts RH, Hickson ID, Louis EJ (2001) SGS1 is required for telomere elongation in the absence of telomerase. Curr Biol 11:125–129. doi:10.1016/S0960-9822(01)00021-5 PubMedCrossRefGoogle Scholar
  54. James SE, Faragher RG, Burke JF, Shall S, Mayne LV (2000) Werner’s syndrome T lymphocytes display a normal in vitro life-span. Mech Ageing Dev 121:139–149. doi:10.1016/S0047-6374(00)00205-0 PubMedCrossRefGoogle Scholar
  55. Jin W, Liu H, Zhang Y, Otta SK, Plon SE, Wang LL (2008) Sensitivity of RECQL4-deficient fibroblasts from Rothmund–Thomson syndrome patients to genotoxic agents. Hum Genet 123:643–653. doi:10.1007/s00439-008-0518-4 PubMedCrossRefGoogle Scholar
  56. Johnson RD, Jasin M (2000) Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J 19:3398–3407. doi:10.1093/emboj/19.13.3398 PubMedCrossRefGoogle Scholar
  57. Johnson FB, Lombard DB, Neff NF, Mastrangelo MA, Dewolf W, Ellis NA, Marciniak RA, Yin Y, Jaenisch R, Guarente L (2000) Association of the Bloom syndrome protein with topoisomerase IIIalpha in somatic and meiotic cells. Cancer Res 60:1162–1167PubMedGoogle Scholar
  58. Johnson FB, Marciniak RA, McVey M, Stewart SA, Hahn WC, Guarente L (2001) The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase. EMBO J 20:905–913. doi:10.1093/emboj/20.4.905 PubMedCrossRefGoogle Scholar
  59. Karow JK, Constantinou A, Li JL, West SC, Hickson ID (2000) The Bloom’s syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci USA 97:6504–6508. doi:10.1073/pnas.100448097 PubMedCrossRefGoogle Scholar
  60. Kawabe T, Tsuyama N, Kitao S, Nishikawa K, Shimamoto A, Shiratori M, Matsumoto T, Anno K, Sato T, Mitsui Y, Seki M, Enomoto T, Goto M, Ellis NA, Ide T, Furuichi Y, Sugimoto M (2000) Differential regulation of human RecQ family helicases in cell transformation and cell cycle. Oncogene 19:4764–4772. doi:10.1038/sj.onc.1203841 PubMedCrossRefGoogle Scholar
  61. Khakhar RR, Cobb JA, Bjergbaek L, Hickson ID, Gasser SM (2003) RecQ helicases: multiple roles in genome maintenance. Trends Cell Biol 13:493–501. doi:10.1016/S0962-8924(03)00171-5 PubMedCrossRefGoogle Scholar
  62. Kitao S, Shimamoto A, Goto M, Miller RW, Smithson WA, Lindor NM, Furuichi Y (1999) Mutations in RECQL4 cause a subset of cases of Rothmund–Thomson syndrome. Nat Genet 22:82–84. doi:10.1038/8788 PubMedCrossRefGoogle Scholar
  63. Krogh BO, Symington LS (2004) Recombination proteins in yeast. Annu Rev Genet 38:233–271. doi:10.1146/annurev.genet.38.072902.091500 PubMedCrossRefGoogle Scholar
  64. Kusumoto R, Dawut L, Marchetti C, Wan Lee J, Vindigni A, Ramsden D, Bohr VA (2008) Werner protein cooperates with the XRCC4-DNA ligase IV complex in end-processing. Biochemistry 47:7548–7556. doi:10.1021/bi702325t PubMedCrossRefGoogle Scholar
  65. Laud PR, Multani AS, Bailey SM, Wu L, Ma J, Kingsley C, Lebel M, Pathak S, DePinho RA, Chang S (2005) Elevated telomere-telomere recombination in WRN-deficient, telomere dysfunctional cells promotes escape from senescence and engagement of the ALT pathway. Genes Dev 19:2560–2570. doi:10.1101/gad.1321305 PubMedCrossRefGoogle Scholar
  66. Lee JW, Harrigan J, Opresko PL, Bohr VA (2005) Pathways and functions of the Werner syndrome protein. Mech Ageing Dev 126:79–86. doi:10.1016/j.mad.2004.09.011 PubMedCrossRefGoogle Scholar
  67. Lee JY, Kozak M, Martin JD, Pennock E, Johnson FB (2007) Evidence that a RecQ helicase slows senescence by resolving recombining telomeres. PLoS Biol 5:e160. doi:10.1371/journal.pbio.0050160 PubMedCrossRefGoogle Scholar
  68. Li X, Heyer WD (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18:99–113. doi:10.1038/cr.2008.1 PubMedCrossRefGoogle Scholar
  69. Liang F, Han M, Romanienko PJ, Jasin M (1998) Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci USA 95:5172–5177. doi:10.1073/pnas.95.9.5172 PubMedCrossRefGoogle Scholar
  70. Liberi G, Maffioletti G, Lucca C, Chiolo I, Baryshnikova A, Cotta-Ramusino C, Lopes M, Pellicioli A, Haber JE, Foiani M (2005) Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev 19:339–350. doi:10.1101/gad.322605 PubMedCrossRefGoogle Scholar
  71. Lillard-Wetherell K, Machwe A, Langland GT, Combs KA, Behbehani GK, Schonberg SA, German J, Turchi JJ, Orren DK, Groden J (2004) Association and regulation of the BLM helicase by the telomere proteins TRF1 and TRF2. Hum Mol Genet 13:1919–1932. doi:10.1093/hmg/ddh193 PubMedCrossRefGoogle Scholar
  72. Lindor NM, Furuichi Y, Kitao S, Shimamoto A, Arndt C, Jalal S (2000) Rothmund–Thomson syndrome due to RECQ4 helicase mutations: report and clinical and molecular comparisons with Bloom syndrome and Werner syndrome. Am J Med Genet 90:223–228. doi:10.1002/(SICI)1096-8628(20000131)90:3<223::AID-AJMG7>3.0.CO;2-ZPubMedCrossRefGoogle Scholar
  73. Lonn U, Lonn S, Nylen U, Winblad G, German J (1990) An abnormal profile of DNA replication intermediates in Bloom’s syndrome. Cancer Res 50:3141–3145PubMedGoogle Scholar
  74. Luo G, Santoro IM, McDaniel LD, Nishijima I, Mills M, Youssoufian H, Vogel H, Schultz RA, Bradley A (2000) Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nat Genet 26:424–429. doi:10.1038/82548 PubMedCrossRefGoogle Scholar
  75. Machwe A, Xiao L, Orren DK (2004) TRF2 recruits the Werner syndrome (WRN) exonuclease for processing of telomeric DNA. Oncogene 23:149–156. doi:10.1038/sj.onc.1206906 PubMedCrossRefGoogle Scholar
  76. Machwe A, Xiao L, Lloyd RG, Bolt E, Orren DK (2007) Replication fork regression in vitro by the Werner syndrome protein (WRN): Holliday junction formation, the effect of leading arm structure and a potential role for WRN exonuclease activity. Nucleic Acids Res 35:5729–5747. doi:10.1093/nar/gkm561 PubMedCrossRefGoogle Scholar
  77. Mann MB, Hodges CA, Barnes E, Vogel H, Hassold TJ, Luo G (2005) Defective sister-chromatid cohesion, aneuploidy and cancer predisposition in a mouse model of type II Rothmund–Thomson syndrome. Hum Mol Genet 14:813–825. doi:10.1093/hmg/ddi075 PubMedCrossRefGoogle Scholar
  78. Matsuno K, Kumano M, Kubota Y, Hashimoto Y, Takisawa H (2006) The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase alpha in the initiation of DNA replication. Mol Cell Biol 26:4843–4852. doi:10.1128/MCB.02267-05 PubMedCrossRefGoogle Scholar
  79. Neumann AA, Reddel RR (2002) Telomere maintenance and cancer–look, no telomerase. Nat Rev Cancer 2:879–884. doi:10.1038/nrc929 PubMedCrossRefGoogle Scholar
  80. Ogburn CE, Oshima J, Poot M, Chen R, Hunt KE, Gollahon KA, Rabinovitch PS, Martin GM (1997) An apoptosis-inducing genotoxin differentiates heterozygotic carriers for Werner helicase mutations from wild-type and homozygous mutants. Hum Genet 101:121–125. doi:10.1007/s004390050599 PubMedCrossRefGoogle Scholar
  81. Okada M, Goto M, Furuichi Y, Sugimoto M (1998) Differential effects of cytotoxic drugs on mortal and immortalized B-lymphoblastoid cell lines from normal and Werner’s syndrome patients. Biol Pharm Bull 21:235–239PubMedGoogle Scholar
  82. Opresko PL (2008) Telomere ResQue and preservation–roles for the Werner syndrome protein and other RecQ helicases. Mech Ageing Dev 129:79–90. doi:10.1016/j.mad.2007.10.007 PubMedCrossRefGoogle Scholar
  83. Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA (2002) Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem 277:41110–41119. doi:10.1074/jbc.M205396200 PubMedCrossRefGoogle Scholar
  84. Opresko PL, Otterlei M, Graakjaer J, Bruheim P, Dawut L, Kolvraa S, May A, Seidman MM, Bohr VA (2004) The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol Cell 14:763–774. doi:10.1016/j.molcel.2004.05.023 PubMedCrossRefGoogle Scholar
  85. Opresko PL, Mason PA, Podell ER, Lei M, Hickson ID, Cech TR, Bohr VA (2005) POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates. J Biol Chem 280:32069–32080. doi:10.1074/jbc.M505211200 PubMedCrossRefGoogle Scholar
  86. Orstavik KH, McFadden N, Hagelsteen J, Ormerod E, van der Hagen CB (1994) Instability of lymphocyte chromosomes in a girl with Rothmund–Thomson syndrome. J Med Genet 31:570–572PubMedCrossRefGoogle Scholar
  87. Oshima J, Huang S, Pae C, Campisi J, Schiestl RH (2002) Lack of WRN results in extensive deletion at nonhomologous joining ends. Cancer Res 62:547–551PubMedGoogle Scholar
  88. Otsuki M, Seki M, Inoue E, Abe T, Narita Y, Yoshimura A, Tada S, Ishii Y, Enomoto T (2008) Analyses of functional interaction between RECQL1, RECQL5, and BLM which physically interact with DNA topoisomerase IIIalpha. Biochim Biophys Acta 1782:75–81PubMedGoogle Scholar
  89. Otterlei M, Bruheim P, Ahn B, Bussen W, Karmakar P, Baynton K, Bohr VA (2006) Werner syndrome protein participates in a complex with RAD51, RAD54, RAD54B and ATR in response to ICL-induced replication arrest. J Cell Sci 119:5137–5146. doi:10.1242/jcs.03291 PubMedCrossRefGoogle Scholar
  90. Ouyang KJ, Woo LL, Ellis NA (2008) Homologous recombination and maintenance of genome integrity: cancer and aging through the prism of human RecQ helicases. Mech Ageing Dev 129:425–440. doi:10.1016/j.mad.2008.03.003 PubMedCrossRefGoogle Scholar
  91. Park SJ, Lee YJ, Beck BD, Lee SH (2006) A positive involvement of RecQL4 in UV-induced S-phase arrest. DNA Cell Biol 25:696–703. doi:10.1089/dna.2006.25.696 PubMedCrossRefGoogle Scholar
  92. Pedrazzi G, Bachrati CZ, Selak N, Studer I, Petkovic M, Hickson ID, Jiricny J, Stagljar I (2003) The Bloom’s syndrome helicase interacts directly with the human DNA mismatch repair protein hMSH6. Biol Chem 384:1155–1164. doi:10.1515/BC.2003.128 PubMedCrossRefGoogle Scholar
  93. Petkovic M, Dietschy T, Freire R, Jiao R, Stagljar I (2005) The human Rothmund-Thomson syndrome gene product, RECQL4, localizes to distinct nuclear foci that coincide with proteins involved in the maintenance of genome stability. J Cell Sci 118:4261–4269. doi:10.1242/jcs.02556 PubMedCrossRefGoogle Scholar
  94. Pichierri P, Rosselli F (2004) The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J 23:1178–1187. doi:10.1038/sj.emboj.7600113 PubMedCrossRefGoogle Scholar
  95. Pichierri P, Franchitto A, Mosesso P, Palitti F (2000) Werner’s syndrome cell lines are hypersensitive to camptothecin-induced chromosomal damage. Mutat Res 456:45–57. doi:10.1016/S0027-5107(00)00109-3 PubMedGoogle Scholar
  96. Pichierri P, Franchitto A, Mosesso P, Palitti F (2001) Werner’s syndrome protein is required for correct recovery after replication arrest and DNA damage induced in S-phase of cell cycle. Mol Biol Cell 12:2412–2421PubMedGoogle Scholar
  97. Pichierri P, Rosselli F, Franchitto A (2003) Werner’s syndrome protein is phosphorylated in an ATR/ATM-dependent manner following replication arrest and DNA damage induced during the S phase of the cell cycle. Oncogene 22:1491–1500. doi:10.1038/sj.onc.1206169 PubMedCrossRefGoogle Scholar
  98. Poot M, Gollahon KA, Rabinovitch PS (1999) Werner syndrome lymphoblastoid cells are sensitive to camptothecin-induced apoptosis in S-phase. Hum Genet 104:10–14. doi:10.1007/s004390050903 PubMedCrossRefGoogle Scholar
  99. Poot M, Yom JS, Whang SH, Kato JT, Gollahon KA, Rabinovitch PS (2001) Werner syndrome cells are sensitive to DNA cross-linking drugs. FASEB J 15:1224–1226PubMedGoogle Scholar
  100. Poot M, Gollahon KA, Emond MJ, Silber JR, Rabinovitch PS (2002) Werner syndrome diploid fibroblasts are sensitive to 4-nitroquinoline-N-oxide and 8-methoxypsoralen: implications for the disease phenotype. FASEB J 16:757–758PubMedGoogle Scholar
  101. Prince PR, Emond MJ, Monnat RJ Jr (2001) Loss of Werner syndrome protein function promotes aberrant mitotic recombination. Genes Dev 15:933–938. doi:10.1101/gad.877001 PubMedCrossRefGoogle Scholar
  102. Ralf C, Hickson ID, Wu L (2006) The Bloom’s syndrome helicase can promote the regression of a model replication fork. J Biol Chem 281:22839–22846. doi:10.1074/jbc.M604268200 PubMedCrossRefGoogle Scholar
  103. Raynard S, Bussen W, Sung P (2006) A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIalpha, and BLAP75. J Biol Chem 281:13861–13864. doi:10.1074/jbc.C600051200 PubMedCrossRefGoogle Scholar
  104. Rodriguez-Lopez AM, Jackson DA, Iborra F, Cox LS (2002) Asymmetry of DNA replication fork progression in Werner’s syndrome. Aging Cell 1:30–39. doi:10.1046/j.1474-9728.2002.00002.x PubMedCrossRefGoogle Scholar
  105. Rodriguez-Lopez AM, Whitby MC, Borer CM, Bachler MA, Cox LS (2007) Correction of proliferation and drug sensitivity defects in the progeroid Werner’s syndrome by Holliday junction resolution. Rejuvenation Res 10:27–40. doi:10.1089/rej.2006.0503 PubMedCrossRefGoogle Scholar
  106. Saintigny Y, Makienko K, Swanson C, Emond MJ, Monnat RJ Jr (2002) Homologous recombination resolution defect in werner syndrome. Mol Cell Biol 22:6971–6978. doi:10.1128/MCB.22.20.6971-6978.2002 PubMedCrossRefGoogle Scholar
  107. Salk D, Au K, Hoehn H, Martin GM (1985) Cytogenetic aspects of Werner syndrome. Adv Exp Med Biol 190:541–546PubMedGoogle Scholar
  108. Sangrithi MN, Bernal JA, Madine M, Philpott A, Lee J, Dunphy WG, Venkitaraman AR (2005) Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund–Thomson syndrome. Cell 121:887–898. doi:10.1016/j.cell.2005.05.015 PubMedCrossRefGoogle Scholar
  109. Sekelsky JJ, Brodsky MH, Rubin GM, Hawley RS (1999) Drosophila and human RecQ5 exist in different isoforms generated by alternative splicing. Nucleic Acids Res 27:3762–3769. doi:10.1093/nar/27.18.3762 PubMedCrossRefGoogle Scholar
  110. Sharma S, Brosh RM Jr (2007) Human RECQ1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges. PLOS One 2:e1297. doi:10.1371/journal.pone.0001297 PubMedCrossRefGoogle Scholar
  111. Sharma S, Doherty KM, Brosh RM Jr (2006) Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J 398:319–337. doi:10.1042/BJ20060450 PubMedCrossRefGoogle Scholar
  112. Shen JC, Loeb LA (2000) The Werner syndrome gene: the molecular basis of RecQ helicase-deficiency diseases. Trends Genet 16:213–220. doi:10.1016/S0168-9525(99)01970-8 PubMedCrossRefGoogle Scholar
  113. Shen J, Loeb LA (2001) Unwinding the molecular basis of the Werner syndrome. Mech Ageing Dev 122:921–944. doi:10.1016/S0047-6374(01)00248-2 PubMedCrossRefGoogle Scholar
  114. Shimamoto A, Nishikawa K, Kitao S, Furuichi Y (2000) Human RecQ5beta, a large isomer of RecQ5 DNA helicase, localizes in the nucleoplasm and interacts with topoisomerases 3alpha and 3beta. Nucleic Acids Res 28:1647–1655. doi:10.1093/nar/28.7.1647 PubMedCrossRefGoogle Scholar
  115. Sidorova JM, Nianzhen L, Folch A, Monnat RJ (2008) The RecQ helicase WRN is required for normal replication fork progression after DNA damage or replication fork arrest. Cell Cycle 7:796–807PubMedGoogle Scholar
  116. Siitonen HA, Kopra O, Kaariainen H, Haravuori H, Winter RM, Saamanen AM, Peltonen L, Kestila M (2003) Molecular defect of RAPADILINO syndrome expands the phenotype spectrum of RECQL diseases. Hum Mol Genet 12:2837–2844. doi:10.1093/hmg/ddg306 PubMedCrossRefGoogle Scholar
  117. Sowd G, Lei M, Opresko PL (2008) Mechanism and substrate specificity of telomeric protein POT1 stimulation of the Werner syndrome helicase. Nucleic Acids Res 36:4242–4256. doi:10.1093/nar/gkn385 PubMedCrossRefGoogle Scholar
  118. Stavropoulos DJ, Bradshaw PS, Li X, Pasic I, Truong K, Ikura M, Ungrin M, Meyn MS (2002) The Bloom syndrome helicase BLM interacts with TRF2 in ALT cells and promotes telomeric DNA synthesis. Hum Mol Genet 11:3135–3144. doi:10.1093/hmg/11.25.3135 PubMedCrossRefGoogle Scholar
  119. Stinco G, Governatori G, Mattighello P, Patrone P (2008) Multiple cutaneous neoplasms in a patient with Rothmund–Thomson syndrome: case report and published work review. J Dermatol 35:154–161. doi:10.1111/j.1346-8138.2008.00436.x PubMedCrossRefGoogle Scholar
  120. Sung P, Krejci L, Van Komen S, Sehorn MG (2003) Rad51 recombinase and recombination mediators. J Biol Chem 278:42729–42732. doi:10.1074/jbc.R300027200 PubMedCrossRefGoogle Scholar
  121. Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S (1998) Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 17:5497–5508. doi:10.1093/emboj/17.18.5497 PubMedCrossRefGoogle Scholar
  122. Thompson LH, Schild D (2002) Recombinational DNA repair and human disease. Mutat Res 509:49–78. doi:10.1016/S0027-5107(02)00224-5 PubMedGoogle Scholar
  123. van Brabant AJ, Stan R, Ellis NA (2000) DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet 1:409–459. doi:10.1146/annurev.genom.1.1.409 PubMedCrossRefGoogle Scholar
  124. Van Maldergem L, Siitonen HA, Jalkh N, Chouery E, De Roy M, Delague V, Muenke M, Jabs EW, Cai J, Wang LL, Plon SE, Fourneau C, Kestila M, Gillerot Y, Megarbane A, Verloes A (2006) Revisiting the craniosynostosis-radial ray hypoplasia association: Baller–Gerold syndrome caused by mutations in the RECQL4 gene. J Med Genet 43:148–152. doi:10.1136/jmg.2005.031781 PubMedCrossRefGoogle Scholar
  125. Vennos EM, James WD (1995) Rothmund–Thomson syndrome. Dermatol Clin 13:143–150PubMedGoogle Scholar
  126. Vennos EM, Collins M, James WD (1992) Rothmund–Thomson syndrome: review of the world literature. J Am Acad Dermatol 27:750–762. doi:10.1016/0190-9622(92)70249-F PubMedCrossRefGoogle Scholar
  127. Wang W, Seki M, Narita Y, Nakagawa T, Yoshimura A, Otsuki M, Kawabe Y, Tada S, Yagi H, Ishii Y, Enomoto T (2003) Functional relation among RecQ family helicases RecQL1, RecQL5, and BLM in cell growth and sister chromatid exchange formation. Mol Cell Biol 23:3527–3535. doi:10.1128/MCB.23.10.3527-3535.2003 PubMedCrossRefGoogle Scholar
  128. Wang Y, Erdmann N, Giannone RJ, Wu J, Gomez M, Liu Y (2005) An increase in telomere sister chromatid exchange in murine embryonic stem cells possessing critically shortened telomeres. Proc Natl Acad Sci USA 102:10256–10260. doi:10.1073/pnas.0504635102 PubMedCrossRefGoogle Scholar
  129. Werner SR, Prahalad AK, Yang J, Hock JM (2006) RECQL4-deficient cells are hypersensitive to oxidative stress/damage: insights for osteosarcoma prevalence and heterogeneity in Rothmund–Thomson syndrome. Biochem Biophys Res Commun 345:403–409. doi:10.1016/j.bbrc.2006.04.093 PubMedCrossRefGoogle Scholar
  130. West SC (2003) Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 4:435–445PubMedCrossRefGoogle Scholar
  131. Woo LL, Futami K, Shimamoto A, Furuichi Y, Frank KM (2006) The Rothmund–Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress. Exp Cell Res 312:3443–3457. doi:10.1016/j.yexcr.2006.07.023 PubMedCrossRefGoogle Scholar
  132. Wu L, Hickson ID (2003) The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426:870–874. doi:10.1038/nature02253 PubMedCrossRefGoogle Scholar
  133. Wu L, Hickson ID (2006) DNA helicases required for homologous recombination and repair of damaged replication forks. Annu Rev Genet 40:279–306. doi:10.1146/annurev.genet.40.110405.090636 PubMedCrossRefGoogle Scholar
  134. Wu L, Davies SL, Levitt NC, Hickson ID (2001) Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. J Biol Chem 276:19375–19381. doi:10.1074/jbc.M009471200 PubMedCrossRefGoogle Scholar
  135. Wu L, Bachrati CZ, Ou J, Xu C, Yin J, Chang M, Wang W, Li L, Brown GW, Hickson ID (2006) BLAP75/RMI1 promotes the BLM-dependent dissolution of homologous recombination intermediates. Proc Natl Acad Sci USA 103:4068–4073. doi:10.1073/pnas.0508295103 PubMedCrossRefGoogle Scholar
  136. Wyllie FS, Jones CJ, Skinner JW, Haughton MF, Wallis C, Wynford-Thomas D, Faragher RG, Kipling D (2000) Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nat Genet 24:16–17. doi:10.1038/71630 PubMedCrossRefGoogle Scholar
  137. Yeager TR, Neumann AA, Englezou A, Huschtscha LI, Noble JR, Reddel RR (1999) Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 59:4175–4179PubMedGoogle Scholar
  138. Yin J, Kwon YT, Varshavsky A, Wang W (2004) RECQL4, mutated in the Rothmund–Thomson and RAPADILINO syndromes, interacts with ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Hum Mol Genet 13:2421–2430. doi:10.1093/hmg/ddh269 PubMedCrossRefGoogle Scholar
  139. Yin J, Sobeck A, Xu C, Meetei AR, Hoatlin M, Li L, Wang W (2005) BLAP75, an essential component of Bloom’s syndrome protein complexes that maintain genome integrity. EMBO J 24:1465–1476. doi:10.1038/sj.emboj.7600622 PubMedCrossRefGoogle Scholar
  140. Zheng H, Wang X, Warren AJ, Legerski RJ, Nairn RS, Hamilton JW, Li L (2003) Nucleotide excision repair- and polymerase eta-mediated error-prone removal of mitomycin C interstrand cross-links. Mol Cell Biol 23:754–761. doi:10.1128/MCB.23.2.754-761.2003 PubMedCrossRefGoogle Scholar

Copyright information

© US Government 2008

Authors and Affiliations

  • Dharmendra Kumar Singh
    • 1
  • Byungchan Ahn
    • 2
  • Vilhelm A. Bohr
    • 1
  1. 1.Laboratory of Molecular Gerontology, Biomedical Research CenterNational Institute on Aging, NIHBaltimoreUSA
  2. 2.Department of Life SciencesUniversity of UlsanUlsanSouth Korea

Personalised recommendations