, Volume 10, Issue 5, pp 593–604 | Cite as

Zinc improves the development of human CD34+ cell progenitors towards NK cells and increases the expression of GATA-3 transcription factor in young and old ages

  • Mario Muzzioli
  • Rosalia Stecconi
  • Raffaella Moresi
  • Mauro Provinciali
Research Article


Aim of this study was to evaluate the effect of zinc on the kinetic of development of CD34+ cell progenitors towards NK cells in young and old ages. CD34+ cells were purified from peripheral blood of healthy subjects and cultured in medium supplemented with interleukin-15, interleukin-7, Flt 3 ligand, and stem cell factor. The number of cells developed in culture was significantly lower in old than in young subjects. CD34+ cells progressively lost CD34 antigen with a faster kinetics in old than in young donors. The percentage of primitive double positive CD34+CD133+ cells inside the purified CD34+ cells was greatly lower in old than in young subjects. These cells progressively decreased in cultures from young subjects whereas they remained at very low levels in old donors. Cells developed in culture acquired a NK phenotype mainly characterized by CD56+CD16 cells in young subjects and CD56CD16+ cells in old donors. These NK cells exerted a lower cytotoxic activity in old than in young subjects. The supplementation with zinc greatly increased the number of cells in culture and the percentage and the cytotoxic activity of NK cells both in young and old ages. In zinc supplemented cultures, a 3.6-fold and a 4.1-fold increased expression of GATA-3 transcription factor was observed in young and old donors, respectively. Our data demonstrate that zinc influences the proliferation and differentiation of CD34+ progenitors both in young and old ages.


Ageing CD34 cell progenitors Zinc NK cells Human GATA-3 



The authors thank Mr. Giovanni Bernardini for performing flow cytometry.


  1. Carayol G, Robin C, Bourhis JH, Bennaceur-Griscelli A, Chouaib S, Coulombel L, Caignard A (1998) NK cell differentiated from bone marrow, cord blood and peripheral blood stem cells exibit similar phenotype and functions. Eur J Immunol 28:1991–2002. doi:10.1002/(SICI)1521-4141(199806)28:06<1991::AID-IMMU1991>3.0.CO;2-7PubMedCrossRefGoogle Scholar
  2. Chidrawar SM, Khan N, Tracey Chan YL, Nayak L, Moss PAH (2006) Ageing is associated with a decline in peripheral blood CD56bright NK cells. Immun Ageing 3:10–18. doi: 10.1186/1742-4933-3-10 PubMedCrossRefGoogle Scholar
  3. Donnini A, Re F, Orlando F, Provinciali M (2007) Intrinsic and microenvironmental defects are involved in the age-related changes of Lin-c-kit + hematopoietic progenitor cells. Rejuvenation Res 10:459–472. doi: 10.1089/rej.2006.0524 PubMedCrossRefGoogle Scholar
  4. Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94:4080–4085. doi: 10.1073/pnas.94.8.4080 PubMedCrossRefGoogle Scholar
  5. Fabris N, Mocchegiani E (1995) Zinc, human diseases and ageing. Aging Clin Exp Res 7:77–93Google Scholar
  6. Fabris N, Mocchegiani E, Provinciali M (1990) Zinc, immunity and aging. In: Goldstein AL (ed) Biochemical advances in aging. Plenum Press, New York, pp 271–281Google Scholar
  7. Ferreira R, Ohneda K, Yamamoto M, Philipsen S (2005) GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol 25:1215–1227. doi: 10.1128/MCB.25.4.1215-1227.2005 PubMedCrossRefGoogle Scholar
  8. Fraker PJ, King LE, Lakko T, Vollmer TL (2000) The dynamic link between the integrity of the immune system and zinc status. J Nutr 130:1399S–1406SPubMedGoogle Scholar
  9. Fuchs E, Segre JA (2000) Stem cells: a new lease of life. Cell 100:143–155. doi: 10.1016/S0092-8674(00)81691-8 PubMedCrossRefGoogle Scholar
  10. Galy A, Travis MCD, Chen D, Chen B (1995) Natural Killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3:459–473. doi: 10.1016/1074-7613(95)90175-2 PubMedCrossRefGoogle Scholar
  11. Globerson A (1999) Hematopoietic stem cells and aging. Exp Gerontol 34:137–146. doi: 10.1016/S0531-5565(98)00069-2 PubMedCrossRefGoogle Scholar
  12. Ko LJ, Engel JD (1993) DNA-binding specificities of the GATA transcription factor family. Mol Cell Biol 13:4011–4022PubMedGoogle Scholar
  13. Krause DS (2002) Plasticity of marrow-derived stem cells. Gene Ther 9:754–758. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  14. Krishnaraj R (1997) Senescence and cytokines modulate the NK cell expression. Mech Ageing Dev 96:89–101. doi: 10.1016/S0047-6374(97)00045-6 PubMedCrossRefGoogle Scholar
  15. Martin DI, Orkin SH (1990) Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf 1. Genes Dev 4:1886–1898. doi: 10.1101/gad.4.11.1886 PubMedCrossRefGoogle Scholar
  16. Miltenyi S, Muller W, Weichel W, Radbruch A (1990) High gradient magnetic cell separation with MACS. Cytometry 11:231–238. doi: 10.1002/cyto.990110203 PubMedCrossRefGoogle Scholar
  17. Mocchegiani E, Marcellini F, Pawelec G (2004) Nutritional zinc, oxidative stress and immunosenescence: biochemical, genetic, and lifestyle implications for healthy ageing. Biogerontology 5:271–273. doi: 10.1023/B:BGEN.0000038048.11766.64 PubMedCrossRefGoogle Scholar
  18. Mocchegiani E, Muzzioli M, Cipriano C, Giacconi R (1998) Zinc, T-cell pathways, aging: role of metallothioneins. Mech Ageing Dev 106:183–204. doi: 10.1016/S0047-6374(98)00115-8 PubMedCrossRefGoogle Scholar
  19. Moresi R, Tesei S, Costarelli L, Viticchi C, Stecconi R, Bernardini G, Provinciali M (2005) Age- and gender-related alterations of the number and clonogenic capacity of circulating CD34+ progenitor cells. Biogerontology 6:185–192. doi: 10.1007/s10522-005-7954-5 PubMedCrossRefGoogle Scholar
  20. Mrozek E, Anderson P, Caligiuri M (1996) Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood 87:2632–2640PubMedGoogle Scholar
  21. Muench MO, Humeau L, Paek B, Ohkubo T, Lanier LL, Albanese CT, Barcena A (2000) Differential effects of interleukin-3, interleukin-7, interleukin-15, and granulocyte-macrophage colony-stimulating factor in the generation of natural killer and B cells from primitive human fetal liver progenitors. Exp Hematol 28:961–973. doi: 10.1016/S0301-472X(00)00490-2 PubMedCrossRefGoogle Scholar
  22. Muzzioli M, Stecconi R, Donnini A, Re F, Provinciali M (2007) Zinc improves the development of human CD34+ cell progenitors towards NK cells and induces the expression of GATA-3 transcription factor. Int J Biochem Cell Biol 39:955–965. doi: 10.1016/j.biocel.2007.01.011 PubMedCrossRefGoogle Scholar
  23. Orange JS, Ballas ZK (2006) Natural killer cells in human health and disease. Clin Immunol 118:1–10. doi: 10.1016/j.clim.2005.10.011 PubMedCrossRefGoogle Scholar
  24. Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a ZIF268-DNA complex at 2.1 A. Science 252:809–817. doi: 10.1126/science.2028256 PubMedCrossRefGoogle Scholar
  25. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45PubMedCrossRefGoogle Scholar
  26. Provinciali M, Di Stefano G, Fabris N (1992) Optimization of cytotoxic assay by target cell retention of the fluorescent dye carboxyfluorescein diacetate (CFDA) and comparison with conventional 51CR release assay. J Immunol Methods 155:19–24. doi: 10.1016/0022-1759(92)90266-V PubMedCrossRefGoogle Scholar
  27. Provinciali M, Di Stefano G, Stronati S (1998) Flow cytometric analysis of CD3/TCR complex, zinc, and glucocorticoid-mediated regulation of apoptosis and cell cycle distribution in thymocytes from old mice. Cytometry 32:1–8. doi:10.1002/(SICI)1097-0320(19980501)32:1<1::AID-CYTO1>3.0.CO;2-QPubMedCrossRefGoogle Scholar
  28. Provinciali M, Donnini A, Argentati K, Di Stasio G, Bartozzi B, Bernardini G (2002) Reactive oxygen species modulate Zn2+-induced apoptosis in cancer cells. Free Radic Biol Med 32:431–445. doi: 10.1016/S0891-5849(01)00830-9 PubMedCrossRefGoogle Scholar
  29. Puzanov I, Bennet M, Kumar V (1996) IL-15 can substitute for the marrow microenvironment in the differentiation of natural killer cells. J Immunol 157:4282–4285PubMedGoogle Scholar
  30. Sansoni P, Cossarizza A, Brianti V, Fagnoni F, Snelli G, Monti D, Marcato A, Passeri G, Ortolani C, Forti E (1993) Lymphocyte subsets and natural killer cell activity in healthy old people and centenarians. Blood 82:2767–2774PubMedGoogle Scholar
  31. Schwenger GTF, Mordvinov VA, Sanderson CJ (2005) Transcription factor GATA-3 is involved in repression of promoter activity of the human interleukin-4 gene. Biochemistry 70:1065–1069PubMedGoogle Scholar
  32. Sconocchia G, Fujiwara H, Rezvani K, Keyvanfar K, Ouriaghli FE, Grube M, Melenhorst J et al (2004) G-CSF-mobilized CD34+ cells cultured in interleukin-2 and stem cell factor generate a phenotypically novel monocyte. J Leukoc Biol 76:1214–1219. doi: 10.1189/jlb.0504278 PubMedCrossRefGoogle Scholar
  33. Sconocchia G, Provenzano M, Rezvani K, Li J, Melenhorst J, Hensel N, Barrett JA (2005) CD34+ cells cultured in stem cell factor and interleukin-2 generate CD56+ cells with antiproliferative effects on tumor cell lines. J Transl Med 3:15–19. doi: 10.1186/1479-5876-3-15 PubMedCrossRefGoogle Scholar
  34. Silva MR, Hoffman R, Srour EF, Ascensao J (1994) Generation of human natural killer cells from immature progenitors does not require marrow stromal cells. Blood 84:841–846PubMedGoogle Scholar
  35. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 95:503–510. doi: 10.1038/ni1582 CrossRefGoogle Scholar
  36. Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430. doi: 10.1126/science.287.5457.1427 PubMedCrossRefGoogle Scholar
  37. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168. doi: 10.1016/S0092-8674(00)81692-X PubMedCrossRefGoogle Scholar
  38. Wulf GG, Jackson KA, Goodell MA (2001) Somatic stem cell plasticity: current evidence and emerging concepts. Exp Hematol 29:1361–1370. doi: 10.1016/S0301-472X(01)00752-4 PubMedCrossRefGoogle Scholar
  39. Yu H, Fehniger TA, Fuchshuber P, Thiel KS, Vivier E, Carson WE, Caligiuri MA (1998) Flt3 ligand promotes the generation of a distinct CD34+ human natural killer cell progenitor that responds to interleukin-15. Blood 92:3647–3657PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Mario Muzzioli
    • 1
  • Rosalia Stecconi
    • 1
  • Raffaella Moresi
    • 1
  • Mauro Provinciali
    • 1
  1. 1.Immunology Center, Gerontol Res DepartmentINRCAAnconaItaly

Personalised recommendations