, 10:457 | Cite as

Co-localization of hyperphosphorylated tau and caspases in the brainstem of Alzheimer’s disease patients

  • Maria Sen Mun Wai
  • Yong Liang
  • Chun Shi
  • Eric Y. P. Cho
  • Hsiang-fu Kung
  • David T. YewEmail author
Research Article


Hyperphosphorylation of microtubule associated protein tau had limited studies in Alzheimer’s disease (AD) brainstem. We compared the distribution and number of neurons with hyperphosphorylated tau in two age groups of AD brainstems with mean ages of 65.4 ± 5.7 and 91.1 ± 6.4 years. The degree of co-localization of hyperphosphorylated tau positive cells with either cleaved caspase-3 or cleaved caspase-6 was also quantified. Results showed hyperphosphorylated tau mainly occurred in hypoglossal, dorsal motor vagal, trigeminal sensory/motor nuclei as well as in dorsal raphe, locus coeruleus and substantia nigra. Older AD brainstem consistently had higher density of hyperphosphorylated tau cells. Up to 70% of tau positive cells also displayed either cleaved caspase-3 or caspase-6, and the number of co-localized tau cells in each caspase subfamily group was always higher in older aged group. Some hyperphosphorylated tau cells with cleaved caspases had TUNEL positive nuclei. These findings suggest that these latter cells went through the apoptotic process or DNA fragmentation.


Alzheimer’s disease Dementia 


  1. Abercrombie M, Johnson ML (1946) Quantitative histology of Wallerian degeneration: I. Nuclear population in rabbit sciatic nerve. J Anat 80:37–50PubMedGoogle Scholar
  2. Aksenov MY, Tucker HM, Nair P et al (1998) The expression of key oxidative stress-handling genes in different brain regions in Alzheimer’s disease. J Mol Neurosci 11:151–164. doi: 10.1385/JMN:11:2:151 PubMedCrossRefGoogle Scholar
  3. Albrecht S, Bourdeau M, Bennett D et al (2007) Activation of caspase-6 in aging and mild cognitive impairment. Am J Pathol 170:1200–1209. doi: 10.2353/ajpath.2007.060974 PubMedCrossRefGoogle Scholar
  4. Aletrino MA, Vogels OJ, Van Domburg PH et al (1992) Cell loss in the nucleus raphes dorsalis in Alzheimer’s disease. Neurobiol Aging 13:461–468. doi: 10.1016/0197-4580(92)90073-7 PubMedCrossRefGoogle Scholar
  5. Alonso AC, Grundke-Iqbal I, Iqbal K (1996) Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 2:783–787. doi: 10.1038/nm0796-783 PubMedCrossRefGoogle Scholar
  6. Alzheimer A (1911) Über eigenartige Krankheitsfälle des späteren Alters. Zeitschrift für die gesamte. Neurol Psychiatr (Bucur) 4:356–385Google Scholar
  7. Andorfer C, Acker CM, Kress Y et al (2005) Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 25:5446–5454. doi: 10.1523/JNEUROSCI.4637-04.2005 PubMedCrossRefGoogle Scholar
  8. Arendt T, Bruckner MK, Bigl V et al (1995) Dendritic reorganisation in the basal forebrain under degenerative conditions and its defects in Alzheimer’s disease. III. The basal forebrain compared with other subcortical areas. J Comp Neurol 351:223–246. doi: 10.1002/cne.903510204 PubMedCrossRefGoogle Scholar
  9. Arnold SE, Hyman BT, Flory J et al (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116. doi: 10.1093/cercor/1.1.103 PubMedCrossRefGoogle Scholar
  10. Attems J, Quass M, Jellinger KA (2007) Tau and alpha-synuclein brainstem pathology in Alzheimer disease: relation with extrapyramidal signs. Acta Neuropathol 113:53–62. doi: 10.1007/s00401-006-0146-9 PubMedCrossRefGoogle Scholar
  11. Avila J, Pérez M, Lim F et al (2004) Tau in neurodegenerative diseases: tau phosphorylation and assembly. Neurotox Res 6:477–482PubMedCrossRefGoogle Scholar
  12. Ballard CG, Jacoby R, Del Ser T et al (2004) Neuropathological substrates of psychiatric symptoms in prospectively studied patients with autopsy-confirmed dementia with lewy bodies. Am J Psychiatry 161:843–849. doi: 10.1176/appi.ajp.161.5.843 PubMedCrossRefGoogle Scholar
  13. Bancher C, Brunner C, Lassmann H et al (1989) Tau and ubiquitin immunoreactivity at different stages of formation of Alzheimer neurofibrillary tangles. Prog Clin Biol Res 317:837–848PubMedGoogle Scholar
  14. Berger AB, Witte MD, Denault JB et al (2006) Identification of early intermediates of caspase activation using selective inhibitors and activity-based probes. Mol Cell 23:509–521. doi: 10.1016/j.molcel.2006.06.021 PubMedCrossRefGoogle Scholar
  15. Bondareff W, Mountjoy CQ, Roth M et al (1989) Neurofibrillary degeneration and neuronal loss in Alzheimer’s disease. Neurobiol Aging 10:709–715. doi: 10.1016/0197-4580(89)90007-9 PubMedCrossRefGoogle Scholar
  16. Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16:271–284. doi: 10.1016/0197-4580(95)00021-6 PubMedCrossRefGoogle Scholar
  17. Braak H, Braak E (1998) Evolution of neuronal changes in the course of Alzheimer’s disease. J Neural Transm Suppl 53:127–140PubMedGoogle Scholar
  18. Braak E, Braak H, Mandelkow EM (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87:554–567. doi: 10.1007/BF00293315 PubMedCrossRefGoogle Scholar
  19. Braak H, Alafuzoff I, Arzberger T et al (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404. doi: 10.1007/s00401-006-0127-z PubMedCrossRefGoogle Scholar
  20. Brodal A (1981) Neurological anatomy in relation to clinical medicine. Oxford University Press, New YorkGoogle Scholar
  21. Burns JM, Galvin JE, Roe CM et al (2005) The pathology of the substantia nigra in Alzheimer disease with extrapyramidal signs. Neurology 64:1397–1403PubMedGoogle Scholar
  22. Chen F, Chang R, Trivedi M et al (2003) Caspase proteolysis of desmin produces a dominant-negative inhibitor of intermediate filaments and promotes apoptosis. J Biol Chem 278:6848–6853. doi: 10.1074/jbc.M212021200 PubMedCrossRefGoogle Scholar
  23. Cowling V, Downward J (2002) Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ 9:1046–1056. doi: 10.1038/sj.cdd.4401065 PubMedCrossRefGoogle Scholar
  24. Crowther RA, Goedert M (2000) Abnormal tau-containing filaments in neurodegenerative diseases. J Struct Biol 130:271–279. doi: 10.1006/jsbi.2000.4270 PubMedCrossRefGoogle Scholar
  25. Curcio CA, Kemper T (1984) Nucleus raphe dorsalis in dementia of the Alzheimer type: neurofibrillary changes and neuronal packing density. J Neuropathol Exp Neurol 43:359–368. doi: 10.1097/00005072-198407000-00001 PubMedCrossRefGoogle Scholar
  26. Dom R, Lammens M, Saedeleer JD et al (1989) Cytometrical and immunocytochemical investigation of brain nuclei in dementia. Prog Clin Biol Res 317:375–381PubMedGoogle Scholar
  27. Forman MS, Lee VM, Trojanowski JQ (2000) New insights into genetic and molecular mechanisms of brain degeneration in tauopathies. J Chem Neuroanat 20:225–244. doi: 10.1016/S0891-0618(00)00100-9 PubMedCrossRefGoogle Scholar
  28. Gamblin TC, Chen F, Zambrano A et al (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci USA 100:10032–10037. doi: 10.1073/pnas.1630428100 PubMedCrossRefGoogle Scholar
  29. Grudzien A, Shaw P, Weintraub S et al (2007) Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging 28:327–335. doi: 10.1016/j.neurobiolaging.2006.02.007 PubMedCrossRefGoogle Scholar
  30. Grundke-Iqbal I, Iqbal K, Tung YC et al (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917. doi: 10.1073/pnas.83.13.4913 PubMedCrossRefGoogle Scholar
  31. Guo H, Albrecht S, Bourdeau M et al (2004) Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer’s disease. Am J Pathol 165:523–531PubMedGoogle Scholar
  32. Horowitz PM, Patterson KR, Guillozet-Bongaarts AL et al (2004) Early N-terminal changes and caspase-6 cleavage of tau in Alzheimer’s disease. J Neurosci 24:7895–7902. doi: 10.1523/JNEUROSCI.1988-04.2004 PubMedCrossRefGoogle Scholar
  33. Imai Y, Ibata I, Ito D et al (1996) A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224:855–862. doi: 10.1006/bbrc.1996.1112 PubMedCrossRefGoogle Scholar
  34. Iqbal K, Alonso AC, Gong CX et al (1998) Mechanisms of neurofibrillary degeneration and the formation of neurofibrillary tangles. J Neural Transm Suppl 53:169–180PubMedGoogle Scholar
  35. Iqbal K, Alonso Adel C, Chen S et al (2005) Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 1739:198–210PubMedGoogle Scholar
  36. Ishii T (1966) Distribution of Alzheimer’s neurofibrillary changes in the brain stem and hypothalamus of senile dementia. Acta Neuropathol 6:181–187. doi: 10.1007/BF00686763 PubMedCrossRefGoogle Scholar
  37. Ishino H, Otsuki S (1975) Frequency of Alzheimer’s neurofibrillary tangles in the basal ganglia and brain-stem in Alzheimer’s disease, senile dementia and the aged. Folia Psychiatr Neurol Jpn 29:279–287PubMedGoogle Scholar
  38. Jellinger KA, Stadelmann C (2000) Mechanisms of cell death in neurodegenerative disorders. J Neural Transm Suppl 59:95–114PubMedGoogle Scholar
  39. Johnson GV, Stoothoff WH (2004) Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 117:5721–5729. doi: 10.1242/jcs.01558 PubMedCrossRefGoogle Scholar
  40. Kimura T, Ono T, Takamatsu J et al (1996) Sequential changes of tau-site-specific phosphorylation during development of paired helical filaments. Dementia 7:177–181. doi: 10.1159/000106875 PubMedGoogle Scholar
  41. Kosaka K, Iizuka R, Mizutani Y et al (1981) Striatonigral degeneration combined with Alzheimer’s disease. Acta Neuropathol 54:253–256. doi: 10.1007/BF00687749 PubMedCrossRefGoogle Scholar
  42. Lassmann H, Bancher C, Breitschopf H et al (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol 89:35–41. doi: 10.1007/BF00294257 PubMedCrossRefGoogle Scholar
  43. LeBlanc AC (2005) The role of apoptotic pathways in Alzheimer’s disease neurodegeneration and cell death. Curr Alzheimer Res 2:389–402. doi: 10.2174/156720505774330573 PubMedCrossRefGoogle Scholar
  44. Lee HG, Perry G, Moreira PI et al (2005) Tau phosphorylation in Alzheimer’s disease: pathogen or protector? Trends Mol Med 11:164–169. doi: 10.1016/j.molmed.2005.02.008 PubMedCrossRefGoogle Scholar
  45. Li WP, Chan WY, Lai HW et al (1997) Terminal dUTP nick end labeling (TUNEL) positive cells in the different regions of the brain in normal aging and Alzheimer patients. J Mol Neurosci 8:75–82. doi: 10.1007/BF02736774 PubMedCrossRefGoogle Scholar
  46. Lindwall G, Cole RD (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 259:5301–5305PubMedGoogle Scholar
  47. Love S, Wilcock GK, Matthews SM (1996) No correlation between nigral degeneration and striatal plaques in Alzheimer’s disease. Acta Neuropathol 91:432–436. doi: 10.1007/s004010050447 PubMedCrossRefGoogle Scholar
  48. Luna LG (1968) Manual of histologic staining methods of the Armed Forces Institute of Pathology, 3rd edn. Blakiston Division, McGraw Hill, NYGoogle Scholar
  49. Maurage CA, Sergeant N, Ruchoux MM et al (2003) Phosphorylated serine 199 of microtubule-associated protein tau is a neuronal epitope abundantly expressed in youth and an early marker of tau pathology. Acta Neuropathol 105:89–97PubMedGoogle Scholar
  50. Murayama S, Saito Y (2004) Neuropathological diagnostic criteria for Alzheimer’s disease. Neuropathology 24:254–260. doi: 10.1111/j.1440-1789.2004.00571.x PubMedCrossRefGoogle Scholar
  51. Neumann PJ, Araki SS, Arcelus A et al (2001) Measuring Alzheimer’s disease progression with transition probabilities: estimates from CERAD. Neurology 57:943–944Google Scholar
  52. Parvizi J, Van Hoesen GW, Damasio A (2000) Selective pathological changes of the periaqueductal gray matter in Alzheimer’s disease. Ann Neurol 48:344–353. doi:10.1002/1531-8249(200009)48:3<344::AID-ANA9>3.0.CO;2-SPubMedCrossRefGoogle Scholar
  53. Parvizi J, Van Hoesen GW, Damasio A (2001) The selective vulnerability of brainstem nuclei to Alzheimer’s disease. Ann Neurol 49:53–66. doi:10.1002/1531-8249(200101)49:1<53::AID-ANA30>3.0.CO;2-QPubMedCrossRefGoogle Scholar
  54. Raynaud F, Marcilhac A (2006) Implication of calpain in neuronal apoptosis. A possible regulation of Alzheimer’s disease. FEBS J 273:3437–3443. doi: 10.1111/j.1742-4658.2006.05352.x PubMedCrossRefGoogle Scholar
  55. Schwab C, Steele JC, McGeer PL (1998) Pyramidal neuron loss is matched by ghost tangle increase in Guam Parkinsonism-dementia hippocampus. Acta Neuropathol 96:409–416. doi: 10.1007/s004010050912 PubMedCrossRefGoogle Scholar
  56. Schwab C, Schulzer M, Steele JC et al (1999) On the survival time of a tangled neuron in the hippocampal CA4 region in Parkinsonism dementia complex of Guam. Neurobiol Aging 20:57–63. doi: 10.1016/S0197-4580(99)00005-6 PubMedCrossRefGoogle Scholar
  57. Shahani N, Brandt R (2002) Functions and malfunctions of the tau proteins. Cell Mol Life Sci 59:1668–1680. doi: 10.1007/PL00012495 PubMedCrossRefGoogle Scholar
  58. Spillantini MG, Goedert M (1998) Tau protein pathology in neurodegenerative diseases. Trends Neurosci 21:428–433. doi: 10.1016/S0166-2236(98)01337-X PubMedCrossRefGoogle Scholar
  59. Sugaya K, Reeves M, McKinney M (1997) Topographic associations between DNA fragmentation and Alzheimer’s disease neuropathology in the hippocampus. Neurochem Int 31:275–281. doi: 10.1016/S0197-0186(96)00158-1 PubMedCrossRefGoogle Scholar
  60. Woolf NJ, Jacobs RW, Butcher LL (1989) The pontomesencephalotegmental cholinergic system does not degenerate in Alzheimer’s disease. Neurosci Lett 96:277–282. doi: 10.1016/0304-3940(89)90391-1 PubMedCrossRefGoogle Scholar
  61. Yamamoto T, Hirano A (1985) Nucleus raphe dorsalis in Alzheimer’s disease: neurofibrillary tangles and loss of large neurons. Ann Neurol 17:573–577. doi: 10.1002/ana.410170608 PubMedCrossRefGoogle Scholar
  62. Yamamoto H, Saitoh Y, Fukunaga K et al (1988) Dephosphorylation of microtubule proteins by brain protein phosphatases 1 and 2A, and its effect on microtubule assembly. J Neurochem 50:1614–1623. doi: 10.1111/j.1471-4159.1988.tb03051.x PubMedCrossRefGoogle Scholar
  63. Zarow C, Lyness SA, Mortimer JA et al (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341. doi: 10.1001/archneur.60.3.337 PubMedCrossRefGoogle Scholar
  64. Zee LG (1964) Quantitative biological techniques, 1st edn. Scientific Press, Beijing, 252 ppGoogle Scholar
  65. Zhang Y, Goodyer C, LeBlanc A (2000) Selective and protracted apoptosis in human primary neurons microinjected with active caspase-3, -6, -7, and -8. J Neurosci 20:8384–8389PubMedGoogle Scholar
  66. Zhou XW, Li X, Bjorkdahl C et al (2006) Assessments of the accumulation severities of amyloid beta-protein and hyperphosphorylated tau in the medial temporal cortex of control and Alzheimer’s brains. Neurobiol Dis 22:657–668. doi: 10.1016/j.nbd.2006.01.006 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Maria Sen Mun Wai
    • 1
  • Yong Liang
    • 2
    • 3
  • Chun Shi
    • 1
  • Eric Y. P. Cho
    • 1
  • Hsiang-fu Kung
    • 4
  • David T. Yew
    • 1
    Email author
  1. 1.Department of AnatomyThe Chinese University of Hong KongShatinHong Kong SAR, China
  2. 2.Institute of Cell BiologyMedical College of Zhejiang UniversityHangzhouChina
  3. 3.Faculty of MedicineTaizhou UniversityTaizhouChina
  4. 4.Stanley Ho Centre for Emerging Infectious Diseases, School of Public HealthThe Chinese University of Hong KongShatinHong Kong SAR, China

Personalised recommendations