, Volume 9, Issue 6, pp 391–403 | Cite as

From proliferative to neurological role of an hsp70 stress chaperone, mortalin

  • Custer C. Deocaris
  • Sunil C. Kaul
  • Renu Wadhwa
Research Article


Although the brain makes up ~2% of a person’s body weight, it consumes more than 15% of total cardiac output and has a per capita caloric requirement of 10 times more than the rest of the body. Such continuous metabolic demand that supports the generation of action potentials in neuronal cells relies on the mitochondria, the main organelle for power generation. The phenomenon of mitochondrial biogenesis, although has long been a neglected theme in neurobiology, can be regarded as critical to brain physiology. The present review emphasizes the role of a key molecular player of mitochondrial biogenesis, the mortalin/mthsp70. Brain mortalin is discussed in relation to its aptitude to impact on mitochondrial function and homeostasis, to its interfacing energy metabolic functions with synaptic plasticity, and to its modulation of brain aging via the cellular senescence pathways. Recently, this chaperone has been implicated in Alzheimer’s (AD) and Parkinson’s (PD) diseases, with proteomic studies consistently identifying oxidatively-damaged mortalin as potential biomarker. Hence, it is possible that mitochondrial dysfunction coincides with the collapse in the mitochondrial chaperone network that aim not only to import, sort and maintain integrity of protein components within the mitochondria, but also to act as buffer to the molecular heterogeneity of damaged and aging mitochondrial proteins within a ROS-rich microenvironment. Inversely, it may also seem that vulnerability to mitochondrial dysfunction could be precipitated by malevolent (anti-chaperone) gain-of-function of a ‘sick mortalin’.


Mortalin Chaperone Mitochondrial functions Oxidative stress Neurodegenerative diseases Adult neurogenesis CNS 



The postdoctoral fellowship of Custer C. Deocaris is supported by the Japan Society for the Promotion of Science (JSPS).


  1. Andersson SG, Karlberg O, Canbäck B, Kurland CG (2003) On the origin of mitochondria: a genomics perspective. Philos Trans R Soc Lond B Biol Sci 358:165–177. doi: 10.1098/rstb.2002.1193 PubMedCrossRefGoogle Scholar
  2. Babcock DF, Herrington J, Goodwin PC, Park YB, Hille B (1997) Mitochondrial participation in the intracellular Ca2+ network. J Cell Biol 136:833–844. doi: 10.1083/jcb.136.4.833 PubMedCrossRefGoogle Scholar
  3. Bhattacharyya T, Karnezis AN, Murphy SP, Hoang T, Freeman BC, Phillips B et al (1995) Cloning and subcellular localization of human mitochondrial hsp70. J Biol Chem 270:1705–1710. doi: 10.1074/jbc.270.4.1705 PubMedCrossRefGoogle Scholar
  4. Bota DA, Davies KJ (2001) Protein degradation in mitochondria: implications for oxidative stress, aging and disease: a novel etiological classification of mitochondrial proteolytic disorders. Mitochondrion 1:33–49. doi: 10.1016/S1567-7249(01)00005-8 PubMedCrossRefGoogle Scholar
  5. Bota DA, Davies KJ (2002) Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4:674–680. doi: 10.1038/ncb836 PubMedCrossRefGoogle Scholar
  6. Bruschi SA, Lindsay JG (1994) Mitochondrial stress protein actions during chemically induced renal proximal tubule cell death. Biochem Cell Biol 72:663–667PubMedCrossRefGoogle Scholar
  7. Bruschi SA, West KA, Crabb JW, Gupta RS, Stevens JL (1993) Mitochondrial HSP60 (P1 protein) and a HSP70-like protein (mortalin) are major targets for modification during S-(1, 1, 2, 2-tetrafluoroethyl)-l-cysteine-induced nephrotoxicity. J Biol Chem 268:23157–23161PubMedGoogle Scholar
  8. Bruschi SA, Lindsay JG, Crabb JW (1998) Mitochondrial stress protein recognition of inactivated dehydrogenases during mammalian cell death. Proc Natl Acad Sci USA 95:13413–13418. doi: 10.1073/pnas.95.23.13413 PubMedCrossRefGoogle Scholar
  9. Bryant SS, Briggs S, Smithgall TE, Martin GA, McCormick F, Chang JH et al (1995) Two SH2 domains of p120 Ras GTPase-activating protein bind synergistically to tyrosine phosphorylated p190 Rho GTPase-activating protein. J Biol Chem 270:17947–17952. doi: 10.1074/jbc.270.30.17947 PubMedCrossRefGoogle Scholar
  10. Cacci E, Ajmone-Cat MA, Anelli T, Biagioni S, Minghetti L (2008) In vitro neuronal and glial differentiation from embryonic or adult neural precursor cells are differently affected by chronic or acute activation of microglia. Glia 56:412–425. doi: 10.1002/glia.20616 PubMedCrossRefGoogle Scholar
  11. Cajal RY (1928) Degeneration and regeneration of the nervous system (Translated by RM Day from the 1913 Spanish edition) (Oxford University Press)Google Scholar
  12. Chang DT, Reynolds IJ (2006) Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol 80:241–268. doi: 10.1016/j.pneurobio.2006.09.003 PubMedCrossRefGoogle Scholar
  13. Cheng MY, Hartl FU, Martin J, Pollock RA, Kalousek F, Neupert W et al (1989) Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337:620–625. doi: 10.1038/337620a0 PubMedCrossRefGoogle Scholar
  14. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014. doi: 10.1126/science.1092734 PubMedCrossRefGoogle Scholar
  15. Choi J, Forster MJ, McDonald SR, Weintraub ST, Carroll CA, Gracy RW (2004) Proteomic identification of specific oxidized proteins in ApoE-knockout mice: relevance to Alzheimer’s disease. Free Radic Biol Med 36:1155–1162. doi: 10.1016/j.freeradbiomed.2004.02.002 PubMedCrossRefGoogle Scholar
  16. Cooper AJ, Wang J, Gartner CA, Bruschi SA (2001) Co-purification of mitochondrial HSP70 and mature protein disulfide isomerase with a functional rat kidney high-M(r) cysteine S-conjugate beta-lyase. Biochem Pharmacol 62:1345–1353. doi: 10.1016/S0006-2952(01)00802-4 PubMedCrossRefGoogle Scholar
  17. Cooper AJ, Bruschi SA, Anders MW (2002) Toxic, halogenated cysteine S-conjugates and targeting of mitochondrial enzymes of energy metabolism. Biochem Pharmacol 64:553–564. doi: 10.1016/S0006-2952(02)01076-6 PubMedCrossRefGoogle Scholar
  18. Craig EA, Kramer J, Kosic-Smithers J (1987) SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth. Proc Natl Acad Sci USA 84:4156–4160. doi: 10.1073/pnas.84.12.4156 PubMedCrossRefGoogle Scholar
  19. Craig EA, Kramer J, Shilling J, Werner-Washburne M, Holmes S, Kosic-Smithers J et al (1989) SSC1, an essential member of the yeast HSP70 multigene family, encodes a mitochondrial protein. Mol Cell Biol 9:3000–3008PubMedGoogle Scholar
  20. Davis JE, Voisine C, Craig EA (1999) Intragenic suppressors of Hsp70 mutants: interplay between the ATPase- and peptide-binding domains. Proc Natl Acad Sci USA 96:9269–9276. doi: 10.1073/pnas.96.16.9269 PubMedCrossRefGoogle Scholar
  21. Deocaris CC, Kaul SC, Wadhwa R (2006) On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones 11:116–128. doi: 10.1379/CSC-144R.1 PubMedCrossRefGoogle Scholar
  22. Deocaris CC, Widodo N, Shrestha BG, Kaur K, Ohtaka M, Yamasaki K et al (2007) Mortalin sensitizes human cancer cells to MKT-077-induced senescence. Cancer Lett 252:259–269. doi: 10.1016/j.canlet.2006.12.038 PubMedCrossRefGoogle Scholar
  23. Deocaris CC, Takano S, Priyandoko D, Kaul Z, Yaguchi T, Kraft DC et al (2008) Glycerol stimulates innate chaperoning, proteasomal and stress-resistance functions: implications for geronto-manipulation. Biogerontology 9(4):269–282PubMedCrossRefGoogle Scholar
  24. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26:9057–9068. doi: 10.1523/JNEUROSCI.1469-06.2006 PubMedCrossRefGoogle Scholar
  25. Domanico SZ, DeNagel DC, Dahlseid JN, Green JM, Pierce SK (1993) Cloning of the gene encoding peptide-binding protein 74 shows that it is a new member of the heat shock protein 70 family. Mol Cell Biol 13:3598–3610PubMedGoogle Scholar
  26. Erecinska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43:37–71. doi: 10.1016/0301-0082(94)90015-9 PubMedCrossRefGoogle Scholar
  27. Erecinska M, Nelson D, Yudkoff M, Silver IA (1994) Energetics of the nerve terminal in relation to central nervous system function. Biochem Soc Trans 22:959–965PubMedGoogle Scholar
  28. Feng Y, Ariza ME, Goulet AC, Shi J, Nelson MA (2005) Death signal induced relocalization of cyclin dependent kinase 11 to mitochondria. Biochem J 392:65–73. doi: 10.1042/BJ20050195 PubMedCrossRefGoogle Scholar
  29. Frazier AE, Chacinska A, Truscott KN, Guiard B, Pfanner N, Rehling P (2003) Mitochondria use different mechanisms for transport of multispanning membrane proteins through the intermembrane space. Mol Cell Biol 23:7818–7828. doi: 10.1128/MCB.23.21.7818-7828.2003 PubMedCrossRefGoogle Scholar
  30. Geissler A, Rassow J, Pfanner N, Voos W (2001) Mitochondrial import driving forces: enhanced trapping by matrix Hsp70 stimulates translocation and reduces the membrane potential dependence of loosely folded preproteins. Mol Cell Biol 21:7097–7104. doi: 10.1128/MCB.21.20.7097-7104.2001 PubMedCrossRefGoogle Scholar
  31. Goering PL, Fisher BR, Noren BT, Papaconstantinou A, Rojko JL, Marler RJ (2000) Mercury induces regional and cell-specific stress protein expression in rat kidney. Toxicol Sci 53:447–457. doi: 10.1093/toxsci/53.2.447 PubMedCrossRefGoogle Scholar
  32. Hall CL, Collis LA, Bo AJ, Lange L, McNicol A, Gerrard JM et al (2001) Fibroblasts require protein kinase C activation to respond to hyaluronan with increased locomotion. Matrix Biol 20:183–192. doi: 10.1016/S0945-053X(01)00133-0 PubMedCrossRefGoogle Scholar
  33. Horst M, Oppliger W, Rospert S, Schonfeld HJ, Schatz G, Azem A (1997) Sequential action of two hsp70 complexes during protein import into mitochondria. EMBO J 16:1842–1849. doi: 10.1093/emboj/16.8.1842 PubMedCrossRefGoogle Scholar
  34. Huang S, Ratliff KS, Matouschek A (2002) Protein unfolding by the mitochondrial membrane potential. Nat Struct Biol 9:301–307. doi: 10.1038/nsb772 PubMedCrossRefGoogle Scholar
  35. Hunzinger C, Wozny W, Schwall GP, Poznanovic S, Stegmann W, Zengerling H et al (2006) Comparative profiling of the mammalian mitochondrial proteome: multiple aconitase-2 isoforms including N-formylkynurenine modifications as part of a protein biomarker signature for reactive oxidative species. J Proteome Res 5:625–633. doi: 10.1021/pr050377+ PubMedCrossRefGoogle Scholar
  36. Jin J, Hulette C, Wang Y, Zhang T, Pan C, Wadhwa R et al (2006) Proteomic identification of a Stress Protein, Mortalin/mthsp70/GRP75: relevance to Parkinson disease. Mol Cell Proteomics 5:1193–1204. doi: 10.1074/mcp.M500382-MCP200 PubMedCrossRefGoogle Scholar
  37. Kanai M, Ma Z, Izumi H, Kim SH, Mattison CP, Winey M et al (2007) Physical and functional interaction between mortalin and Mps1 kinase. Genes Cells 12:797–810PubMedGoogle Scholar
  38. Kaneko N, Kudo K, Mabuchi T, Takemoto K, Fujimaki K, Wati H et al (2006) Suppression of cell proliferation by interferon-alpha through interleukin-1 production in adult rat dentate gyrus. Neuropsychopharmacology 31:2619–2626. doi: 10.1038/sj.npp.1301137 PubMedCrossRefGoogle Scholar
  39. Kann O, Kovacs R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292:C641–C657. doi: 10.1152/ajpcell.00222.2006 PubMedCrossRefGoogle Scholar
  40. Kaul SC, Aida S, Yaguchi T, Kaur K, Wadhwa R (2005) Activation of wild type p53 function by its mortalin-binding, cytoplasmically localizing carboxyl terminus peptides. J Biol Chem 280:39373–39379. doi: 10.1074/jbc.M500022200 PubMedCrossRefGoogle Scholar
  41. Kaul SC, Deocaris CC, Wadhwa R (2007) Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol 42:263–274. doi: 10.1016/j.exger.2006.10.020 PubMedCrossRefGoogle Scholar
  42. Kimura K, Tanaka N, Nakamura N, Takano S, Ohkuma S (2007) Knockdown of mitochondrial heat shock protein 70 promotes progeria-like phenotypes in Caenorhabditis elegans. J Biol Chem 282:5910–5918. doi: 10.1074/jbc.M609025200 PubMedCrossRefGoogle Scholar
  43. Kuwabara H, Yoneda M, Hayasaki H, Nakamura T, Mori H (2006) Glucose regulated proteins 78 and 75 bind to the receptor for hyaluronan mediated motility in interphase microtubules. Biochem Biophys Res Commun 339:971–976. doi: 10.1016/j.bbrc.2005.11.101 PubMedCrossRefGoogle Scholar
  44. Leonhard K, Stiegler A, Neupert W, Langer T (1999) Chaperone-like activity of the AAA domain of the yeast Yme1 AAA protease. Nature 398:348–351. doi: 10.1038/18704 PubMedCrossRefGoogle Scholar
  45. Liu Y, Liu W, Song XD, Zuo J (2005) Effect of GRP75/mthsp70/PBP74/mortalin overexpression on intracellular ATP level, mitochondrial membrane potential and ROS accumulation following glucose deprivation in PC12 cells. Mol Cell Biochem 268:45–51. doi: 10.1007/s11010-005-2996-1 PubMedCrossRefGoogle Scholar
  46. Ma Z, Izumi H, Kanai M, Kabuyama Y, Ahn NG, Fukasawa K (2006) Mortalin controls centrosome duplication via modulating centrosomal localization of p53. Oncogene 25:5377–5390. doi: 10.1038/sj.onc.1209543 PubMedCrossRefGoogle Scholar
  47. Macario AJ, Conway de Macario E (2007a) Chaperonopathies by defect, excess, or mistake. Ann N Y Acad Sci 1113:178–191. doi: 10.1196/annals.1391.009 PubMedCrossRefGoogle Scholar
  48. Macario AJ, Conway de Macario E (2007b) Chaperonopathies and chaperonotherapy. FEBS Lett 581:3681–3688. doi: 10.1016/j.febslet.2007.04.030 PubMedCrossRefGoogle Scholar
  49. Macario AJ, Conway de Macario E (2007c) Molecular chaperones: multiple functions, pathologies, and potential applications. Front Biosci 12:2588–2600. doi: 10.2741/2257 PubMedCrossRefGoogle Scholar
  50. Mannella CA, Buttle K, Rath BK, Marko M (1998) Electron microscopic tomography of rat-liver mitochondria and their interaction with the endoplasmic reticulum. Biofactors 8:225–228PubMedGoogle Scholar
  51. Massa SM, Longo FM, Zuo J, Wang S, Chen J, Sharp FR (1995) Cloning of rat grp75, an hsp70-family member, and its expression in normal and ischemic brain. J Neurosci Res 40:807–819. doi: 10.1002/jnr.490400612 PubMedCrossRefGoogle Scholar
  52. Matouschek A, Azem A, Ratliff K, Glick BS, Schmid K, Schatz G (1997) Active unfolding of precursor proteins during mitochondrial protein import. EMBO J 16:6727–6736. doi: 10.1093/emboj/16.22.6727 PubMedCrossRefGoogle Scholar
  53. Mattson MP (2006) Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxid Redox Signal 8:1997–2006. doi: 10.1089/ars.2006.8.1997 PubMedCrossRefGoogle Scholar
  54. Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6:337–350. doi: 10.1111/j.1474-9726.2007.00275.x PubMedCrossRefGoogle Scholar
  55. Michishita E, Nakabayashi K, Suzuki T, Kaul SC, Ogino H, Fujii M et al (1999) 5-Bromodeoxyuridine induces senescence-like phenomena in mammalian cells regardless of cell type or species. J Biochem 126:1052–1059PubMedGoogle Scholar
  56. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590. doi: 10.1016/S1097-2765(03)00050-9 PubMedCrossRefGoogle Scholar
  57. Mizukoshi E, Suzuki M, Loupatov A, Uruno T, Hayashi H, Misono T et al (1999) Fibroblast growth factor-1 interacts with the glucose-regulated protein GRP75/mortalin. Biochem J 343:461–466. doi: 10.1042/0264-6021:3430461 PubMedCrossRefGoogle Scholar
  58. Mizukoshi E, Suzuki M, Misono T, Loupatov A, Munekata E, Kaul SC et al (2001) Cell-cycle dependent tyrosine phosphorylation on mortalin regulates its interaction with fibroblast growth factor-1. Biochem Biophys Res Commun 280:1203–1209. doi: 10.1006/bbrc.2001.4225 PubMedCrossRefGoogle Scholar
  59. Nottebohm F (1981) A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary brain. Science 214:1368–1370. doi: 10.1126/science.7313697 PubMedCrossRefGoogle Scholar
  60. O’Donnell MP, Kasiske BL, Kim Y, Atluru D, Keane WF (1993) The mevalonate pathway: importance in mesangial cell biology and glomerular disease. Miner Electrolyte Metab 19:173–179PubMedGoogle Scholar
  61. Orsini F, Migliaccio E, Moroni M, Contursi C, Raker VA, Piccini D et al (2004) The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. J Biol Chem 279:25689–25695. doi: 10.1074/jbc.M401844200 PubMedCrossRefGoogle Scholar
  62. Osorio C, Sullivan PM, He DN, Mace BE, Ervin JF, Strittmatter WJ et al (2007) Mortalin is regulated by APOE in hippocampus of AD patients and by human APOE in TR mice. Neurobiol Aging 28:1853–1862. doi: 10.1016/j.neurobiolaging.2006.08.011 PubMedCrossRefGoogle Scholar
  63. Ostermann J, Voos W, Kang PJ, Craig EA, Neupert W, Pfanner N (1990) Precursor proteins in transit through mitochondrial contact sites interact with hsp70 in the matrix. FEBS Lett 277:281–284. doi: 10.1016/0014-5793(90)80865-G PubMedCrossRefGoogle Scholar
  64. Pilzer D, Fishelson Z (2005) Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis. Int Immunol 17:1239–1248. doi: 10.1093/intimm/dxh300 PubMedCrossRefGoogle Scholar
  65. Pilzer D, Gasser O, Moskovich O, Schifferli JA, Fishelson Z (2005) Emission of membrane vesicles: roles in complement resistance, immunity and cancer. Springer Semin Immunopathol 27:375–387. doi: 10.1007/s00281-005-0004-1 PubMedCrossRefGoogle Scholar
  66. Pimentel B, Sanz C, Varela-Nieto I, Rapp UR, De Pablo F, de La Rosa EJ (2000) c-Raf regulates cell survival and retinal ganglion cell morphogenesis during neurogenesis. J Neurosci 20:3254–3262PubMedGoogle Scholar
  67. Poindexter BJ, Pereira-Smith O, Wadhwa R, Buja LM, Bick RJ (2002) 3D reconstruction and localization of mortalin by deconvolution microscopy. Microsc Anal 89:21–23Google Scholar
  68. Ran Q, Wadhwa R, Kawai R, Kaul SC, Sifers RN, Bick RJ et al (2000) Extramitochondrial localization of mortalin/mthsp70/PBP74/GRP75. Biochem Biophys Res Commun 275:174–179. doi: 10.1006/bbrc.2000.3237 PubMedCrossRefGoogle Scholar
  69. Rivolta MN, Holley MC (2002) Asymmetric segregation of mitochondria and mortalin correlates with the multi-lineage potential of inner ear sensory cell progenitors in vitro. Brain Res Dev Brain Res 133:49–56. doi: 10.1016/S0165-3806(01)00321-2 PubMedCrossRefGoogle Scholar
  70. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM et al (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766. doi: 10.1126/science.280.5370.1763 PubMedCrossRefGoogle Scholar
  71. Sacht G, Brigelius-Flohe R, Kiess M, Sztajer H, Flohe L (1999) ATP-sensitive association of mortalin with the IL-1 receptor type I. Biofactors 9:49–60PubMedGoogle Scholar
  72. Sanjuan Szklarz LK, Guiard B, Rissler M, Wiedemann N, Kozjak V, van der Laan M et al (2005) Inactivation of the mitochondrial heat shock protein zim17 leads to aggregation of matrix hsp70s followed by pleiotropic effects on morphology and protein biogenesis. J Mol Biol 351:206–218. doi: 10.1016/j.jmb.2005.05.068 PubMedCrossRefGoogle Scholar
  73. Savel’ev AS, Novikova LA, Kovaleva IE, Luzikov VN, Neupert W, Langer T (1998) ATP-dependent proteolysis in mitochondria. m-AAA protease and PIM1 protease exert overlapping substrate specificities and cooperate with the mtHsp70 system. J Biol Chem 273:20596–20602. doi: 10.1074/jbc.273.32.20596 PubMedCrossRefGoogle Scholar
  74. Saveliev AS, Kovaleva IE, Novikova LA, Isaeva LV, Luzikov VN (1999) Can foreign proteins imported into yeast mitochondria interfere with PIM1p protease and/or chaperone function? Arch Biochem Biophys 363:373–376. doi: 10.1006/abbi.1998.1092 PubMedCrossRefGoogle Scholar
  75. Schneider HC, Berthold J, Bauer MF, Dietmeier K, Guiard B, Brunner M et al (1994) Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature 371:768–774. doi: 10.1038/371768a0 PubMedCrossRefGoogle Scholar
  76. Schwarzer C, Barnikol-Watanabe S, Thinnes FP, Hilschmann N (2002) Voltage-dependent anion-selective channel (VDAC) interacts with the dynein light chain Tctex1 and the heat-shock protein PBP74. Int J Biochem Cell Biol 34:1059–1070. doi: 10.1016/S1357-2725(02)00026-2 PubMedCrossRefGoogle Scholar
  77. Sherman MY, Goldberg AL (1993) Heat shock of Escherichia coli increases binding of dnaK (the hsp70 homolog) to polypeptides by promoting its phosphorylation. Proc Natl Acad Sci USA 90:8648–8652. doi: 10.1073/pnas.90.18.8648 PubMedCrossRefGoogle Scholar
  78. Shi M, Jin J, Wang Y, Beyer RP, Kitsou E, Albin RL et al (2008) Mortalin: a protein associated with progression of parkinson disease? J Neuropathol Exp Neurol 67:117–124. doi: 10.1097/nen.0b013e318163354a PubMedCrossRefGoogle Scholar
  79. Shin BK, Wang H, Yim AM, Le Naour F, Brichory F, Jang JH et al (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278:7607–7616. doi: 10.1074/jbc.M210455200 PubMedCrossRefGoogle Scholar
  80. Silver I, Erecinska M (1998) Oxygen and ion concentrations in normoxic and hypoxic brain cells. Adv Exp Med Biol 454:7–16PubMedGoogle Scholar
  81. Soltys BJ, Gupta RS (1999) Mitochondrial-matrix proteins at unexpected locations: are they exported? Trends Biochem Sci 24:174–177. doi: 10.1016/S0968-0004(99)01390-0 PubMedCrossRefGoogle Scholar
  82. Soltys BJ, Gupta RS (2000) Mitochondrial proteins at unexpected cellular locations: export of proteins from mitochondria from an evolutionary perspective. Int Rev Cytol 194:133–196. doi: 10.1016/S0074-7696(08)62396-7 PubMedCrossRefGoogle Scholar
  83. Stacchiotti A, Lavazza A, Rezzani R, Borsani E, Rodella L, Bianchi R (2004) Mercuric chloride-induced alterations in stress protein distribution in rat kidney. Histol Histopathol 19:1209–1218PubMedGoogle Scholar
  84. Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40:1250–1258. doi: 10.1080/10715760600918142 PubMedCrossRefGoogle Scholar
  85. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336. doi: 10.1016/0891-5849(94)00159-H PubMedCrossRefGoogle Scholar
  86. Strub A, Zufall N, Voos W (2003) The putative helical lid of the Hsp70 peptide-binding domain is required for efficient preprotein translocation into mitochondria. J Mol Biol 334:1087–1099PubMedCrossRefGoogle Scholar
  87. Sullivan PG, Dragicevic NB, Deng JH, Bai Y, Dimayuga E, Ding Q et al (2004) Proteasome inhibition alters neural mitochondrial homeostasis and mitochondria turnover. J Biol Chem 279:20699–20707. doi: 10.1074/jbc.M313579200 PubMedCrossRefGoogle Scholar
  88. Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D et al (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175:901–911. doi: 10.1083/jcb.200608073 PubMedCrossRefGoogle Scholar
  89. Takano S, Wadhwa R, Yoshii Y, Nose T, Kaul SC, Mitsui Y (1997) Elevated levels of mortalin expression in human brain tumors. Exp Cell Res 237:38–45. doi: 10.1006/excr.1997.3754 PubMedCrossRefGoogle Scholar
  90. Takano S, Wadhwa R, Mitsui Y, Kaul SC (2001) Identification and characterization of molecular interactions between glucose-regulated proteins (GRPs) mortalin/GRP75/peptide-binding protein 74 (PBP74) and GRP94. Biochem J 357:393–398. doi: 10.1042/0264-6021:3570393 PubMedCrossRefGoogle Scholar
  91. Temple S, Qian X (1995) bFGF, neurotrophins, and the control or cortical neurogenesis. Neuron 15:249–252. doi: 10.1016/0896-6273(95)90030-6 PubMedCrossRefGoogle Scholar
  92. Tong JJ (2007) Mitochondrial delivery is essential for synaptic potentiation. Biol Bull 212:169–175PubMedCrossRefGoogle Scholar
  93. Truscott KN, Brandner K, Pfanner N (2003) Mechanisms of protein import into mitochondria. Curr Biol 13:R326–R337. doi: 10.1016/S0960-9822(03)00239-2 PubMedCrossRefGoogle Scholar
  94. Uberti D, Piccioni L, Cadei M, Grigolato P, Rotter V, Memo M (2001) p53 is dispensable for apoptosis but controls neurogenesis of mouse dentate gyrus cells following gamma-irradiation. Brain Res Mol Brain Res 93:81–89. doi: 10.1016/S0169-328X(01)00180-2 PubMedCrossRefGoogle Scholar
  95. Van Laar VS, Dukes AA, Cascio M, Hastings TG (2008) Proteomic analysis of rat brain mitochondria following exposure to dopamine quinone: implications for Parkinson disease. Neurobiol Dis 29:477–489. doi: 10.1016/j.nbd.2007.11.007 PubMedCrossRefGoogle Scholar
  96. Wadhwa R, Kaul SC, Ikawa Y, Sugimoto Y (1993a) Identification of a novel member of mouse hsp70 family. Its association with cellular mortal phenotype. J Biol Chem 268:6615–6621PubMedGoogle Scholar
  97. Wadhwa R, Kaul SC, Sugimoto Y, Mitsui Y (1993b) Induction of cellular senescence by transfection of cytosolic mortalin cDNA in NIH 3T3 cells. J Biol Chem 268:22239–22242PubMedGoogle Scholar
  98. Wadhwa R, Pereira-Smith OM, Reddel RR, Sugimoto Y, Mitsui Y, Kaul SC (1995) Correlation between complementation group for immortality and the cellular distribution of mortalin. Exp Cell Res 216:101–106. doi: 10.1006/excr.1995.1013 PubMedCrossRefGoogle Scholar
  99. Wadhwa R, Takano S, Robert M, Yoshida A, Nomura H, Reddel RR et al (1998) Inactivation of tumor suppressor p53 by mot-2, a hsp70 family member. J Biol Chem 273:29586–29591. doi: 10.1074/jbc.273.45.29586 PubMedCrossRefGoogle Scholar
  100. Wadhwa R, Sugihara T, Yoshida A, Nomura H, Reddel RR, Simpson R et al (2000) Selective toxicity of MKT-077 to cancer cells is mediated by its binding to the hsp70 family protein mot-2 and reactivation of p53 function. Cancer Res 60:6818–6821PubMedGoogle Scholar
  101. Wadhwa R, Colgin L, Yaguchi T, Taira K, Reddel RR, Kaul SC (2002) Rhodacyanine dye MKT-077 inhibits in vitro telomerase assay but has no detectable effects on telomerase activity in vivo. Cancer Res 62:4434–4438PubMedGoogle Scholar
  102. Wadhwa R, Ando H, Kawasaki H, Taira K, Kaul SC (2003a) Targeting mortalin using conventional and RNA-helicase-coupled hammerhead ribozymes. EMBO Rep 4:595–601. doi: 10.1038/sj.embor.embor855 PubMedCrossRefGoogle Scholar
  103. Wadhwa R, Yaguchi T, Hasan MK, Taira K, Kaul SC (2003b) Mortalin-MPD (mevalonate pyrophosphate decarboxylase) interactions and their role in control of cellular proliferation. Biochem Biophys Res Commun 302:735–742. doi: 10.1016/S0006-291X(03)00226-2 PubMedCrossRefGoogle Scholar
  104. Wadhwa R, Takano S, Taira K, Kaul SC (2004) Reduction in mortalin level by its antisense expression causes senescence-like growth arrest in human immortalized cells. J Gene Med 6:439–444. doi: 10.1002/jgm.530 PubMedCrossRefGoogle Scholar
  105. Wadhwa R, Takano S, Kaur K, Aida S, Yaguchi T, Kaul Z et al (2005) Identification and characterization of molecular interactions between mortalin/mtHsp70 and HSP60. Biochem J 391:185–190. doi: 10.1042/BJ20050861 PubMedCrossRefGoogle Scholar
  106. Wagner I, Arlt H, van Dyck L, Langer T, Neupert W (1994) Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J 13:5135–5145PubMedGoogle Scholar
  107. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407. doi: 10.1146/annurev.genet.39.110304.095751 PubMedCrossRefGoogle Scholar
  108. Walter L, Hajnoczky G (2005) Mitochondria and endoplasmic reticulum: the lethal interorganelle cross-talk. J Bioenerg Biomembr 37:191–206. doi: 10.1007/s10863-005-6600-x PubMedCrossRefGoogle Scholar
  109. Wang C, Thor AD, Moore DH 2nd, Zhao Y, Kerschmann R, Stern R et al (1998) The overexpression of RHAMM, a hyaluronan-binding protein that regulates ras signaling, correlates with overexpression of mitogen-activated protein kinase and is a significant parameter in breast cancer progression. Clin Cancer Res 4:567–576PubMedGoogle Scholar
  110. Widodo N, Deocaris CC, Kaur K, Hasan K, Yaguchi T, Yamasaki K et al (2007) Stress chaperones, mortalin, and pex19p mediate 5-aza-2′ deoxycytidine-induced senescence of cancer cells by DNA methylation-independent pathway. J Gerontol A Biol Sci Med Sci 62:246–255PubMedGoogle Scholar
  111. Willis D, Li KW, Zheng JQ, Chang JH, Smit A, Kelly T et al (2005) Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J Neurosci 25:778–791. doi: 10.1523/JNEUROSCI.4235-04.2005 PubMedCrossRefGoogle Scholar
  112. Zhang S, Chang MC, Zylka D, Turley S, Harrison R, Turley EA (1998) The hyaluronan receptor RHAMM regulates extracellular-regulated kinase. J Biol Chem 273:11342–11348. doi: 10.1074/jbc.273.18.11342 PubMedCrossRefGoogle Scholar
  113. Zheng DH, Zuo J, Yang ZJ, Xia BL, Zhang XN (2000) Grp75 protects cells from injuries caused by glucose deprivation. Yi Chuan Xue Bao 27:666–671PubMedGoogle Scholar
  114. Zinsmaier KE, Bronk P (2001) Molecular chaperones and the regulation of neurotransmitter exocytosis. Biochem Pharmacol 62:1–11. doi: 10.1016/S0006-2952(01)00648-7 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Custer C. Deocaris
    • 1
    • 2
  • Sunil C. Kaul
    • 2
  • Renu Wadhwa
    • 2
  1. 1.Institute of Health and Sports ScienceUniversity of TsukubaIbarakiJapan
  2. 2.Research Institute for Cell EngineeringNational Institute of Advanced Industrial Science and Technology (AIST)IbarakiJapan

Personalised recommendations