Advertisement

Biogerontology

, Volume 10, Issue 2, pp 97–108 | Cite as

Ferulic acid and its therapeutic potential as a hormetin for age-related diseases

  • Eugenio Barone
  • Vittorio Calabrese
  • Cesare Mancuso
Review Article

Abstract

Ferulic acid (FA) is a polyphenol very abundant in vegetables and maize bran. Several lines of evidence have shown that FA acts as a potent antioxidant in vitro, due to its ability to scavenge free radicals and induce a robust cell stress response through the up-regulation of cytoprotective enzymes such as heme oxygenase-1, heat shock protein 70, extracellular signal-regulated kinase 1/2 and Akt. Furthermore, FA inhibited the expression and/or activity of cytotoxic enzymes including inducible nitric oxide synthase, caspases and cyclooxygenase-2. On this basis, FA has been proposed for the treatment of several age-related diseases such as neurodegenerative disorders, cardiovascular diseases, diabetes and cancer. However, although the great abundance of in vitro data, the real efficacy of FA in humans has not been demonstrated so far. New efforts and resources should be transferred to clinical research for the complete evaluation of the therapeutic potential of FA in chronic diseases.

Keywords

Aging Ferulic acid Free radicals Heme oxygenase Neurodegenerative disorders 

Notes

Acknowledgments

The authors are grateful to Prof. Paolo Preziosi MD, Emeritus of Pharmacology at the Catholic University School of Medicine in Roma, for his helpful comments and suggestions and for reading the manuscript. This work was supported by Fondi Ateneo 2007 and 2008 to C.M.

References

  1. Anselmi C, Centini M, Maggiore M et al (2008) Non-covalent inclusion of ferulic acid with alpha-cyclodextrin improves photo-stability and delivery: NMR and modeling studies. J Pharm Biomed Anal 46:645–652. doi: 10.1016/j.jpba.2007.11.037 PubMedCrossRefGoogle Scholar
  2. Barnham KJ, Cappai R, Beyreuther K et al (2006) Delineating common molecular mechanisms in Alzheimer’s and prion diseases. Trends Biochem Sci 31:465–472. doi: 10.1016/j.tibs.2006.06.006 PubMedCrossRefGoogle Scholar
  3. Bourne LC, Rice-Evans C (1998) Bioavailability of ferulic acid. Biochem Biophys Res Commun 253:222–277. doi: 10.1006/bbrc.1998.9681 PubMedCrossRefGoogle Scholar
  4. Butterfield DA (2002) Amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic Res 36:1307–1313. doi: 10.1080/1071576021000049890 PubMedCrossRefGoogle Scholar
  5. Calabrese V, Guagliano E, Sapienza M et al (2006a) Redox regulation of cellular stress response in neurodegenerative disorders. Ital J Biochem 55:263–282PubMedGoogle Scholar
  6. Calabrese V, Sultana R, Scapagnini G et al (2006b) Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer’s disease. Antioxid Redox Signal 8:1975–1986. doi: 10.1089/ars.2006.8.1975 PubMedCrossRefGoogle Scholar
  7. Calabrese V, Mancuso C, Calvani M et al (2007a) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775. doi: 10.1038/nrn2214 PubMedCrossRefGoogle Scholar
  8. Calabrese V, Mancuso C, Sapienza M et al (2007b) Oxidative stress and cellular stress response in diabetic nephropathy. Cell Stress Chaperones 12:299–306. doi: 10.1379/CSC-270.1 PubMedCrossRefGoogle Scholar
  9. Calabrese V, Calafato S, Puleo E et al (2008) Redox regulation of cellular stress response by ferulic acid ethyl ester in human dermal fibroblast: role of vitagenes. Clin Dermatol (in press)Google Scholar
  10. Centers for Disease Control and Prevention (CDC) (2001) Prevalence of healthy lifestyle characteristics–Michigan, 1998 and 2000. MMWR Morb Mortal Wkly Rep 50(35):758–761Google Scholar
  11. Cho JY, Kim HS, Kim DH et al (2005) Inhibitory effects of long-term administration of ferulic acid on astrocyte activation induced by intracerebroventricular injection of beta-amyloid peptide (1–42) in mice. Prog Neuropsychopharmacol Biol Psychiatry 29:901–907. doi: 10.1016/j.pnpbp. 2005.04.022 PubMedCrossRefGoogle Scholar
  12. Cione E, Tucci P, Senatore V et al (2008) Synthesized esters of ferulic acid induce release of cytochrome c from rat testes mitochondria. J Bioenerg Biomembr 40:19–26. doi: 10.1007/s10863-007-9097-7 PubMedCrossRefGoogle Scholar
  13. Clifford MN (1999) Chlorogenic acids and other cinnamates-nature, occurrence and dietary burden. J Sci Food Agric 79:362–372. doi:10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-DCrossRefGoogle Scholar
  14. Comporti M (1989) Three models of free radical-induced cell injury. Chem Biol Interact 72:1–56. doi: 10.1016/0009-2797(89)90016-1 PubMedCrossRefGoogle Scholar
  15. Couteau D, McCartney AL, Gibson GR et al (2001) Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. J Appl Microbiol 90:873–881. doi: 10.1046/j.1365-2672.2001.01316.x PubMedCrossRefGoogle Scholar
  16. D’Archivio M, Filesi C, Di Benedetto R et al (2007) Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita 43:348–361PubMedGoogle Scholar
  17. Edelman SV (1998) Type II diabetes mellitus. Adv Intern Med 43:449–500PubMedGoogle Scholar
  18. FitzGerald RJ, Murray BA, Walsh DJ (2004) Hypotensive peptides from milk proteins. J Nutr 134:980S–988SPubMedGoogle Scholar
  19. Frances C, Robert L (1984) Elastin and elastic fibers in normal and pathologic skin. Int J Dermatol 23:166–179. doi: 10.1111/j.1365-4362.1984.tb04506.x PubMedCrossRefGoogle Scholar
  20. Fujita A, Sasaki H, Doi A et al (2008) Ferulic acid prevents pathological and functional abnormalities of the kidney in Otsuka Long-Evans Tokushima Fatty diabetic rats. Diabetes Res Clin Pract 79:11–17. doi: 10.1016/j.diabres.2007.08.009 PubMedCrossRefGoogle Scholar
  21. Giacchetti G, Sechi LA, Rilli S et al (2005) The renin-angiotensin-aldosterone system, glucose metabolism and diabetes. Trends Endocrinol Metab 16:120–126. doi: 10.1016/j.tem.2005.02.003 PubMedCrossRefGoogle Scholar
  22. Graf E (1992) Antioxidant potential of ferulic acid. Free Radic Biol Med 13:435–448. doi: 10.1016/0891-5849(92)90184-I PubMedCrossRefGoogle Scholar
  23. Hassan HH, Denis M, Krimbou L et al (2006) Cellular cholesterol homeostasis in vascular endothelial cells. Can J Cardiol 22(Suppl B):35B–40BPubMedGoogle Scholar
  24. Hinault MP, Ben-Zvi A, Goloubinoff P (2006) Chaperones and proteases: cellular fold-controlling factors of proteins in neurodegenerative diseases and aging. J Mol Neurosci 30:249–265. doi: 10.1385/JMN:30:3:249 PubMedCrossRefGoogle Scholar
  25. Hirose M, Takahashi S, Ogawa K et al (1999) Phenolics: blocking agents for heterocyclic amine-induced carcinogenesis. Food Chem Toxicol 37:985–992. doi: 10.1016/S0278-6915(99)00092-7 PubMedCrossRefGoogle Scholar
  26. Hölzle E (1992) Pigmented lesions as a sign of photodamage. Br J Dermatol Suppl 41:48–50Google Scholar
  27. Inoguchi T, Sonta T, Tsubouchi H et al (2003) Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase. J Am Soc Nephrol 14:S227–S232. doi: 10.1097/01.ASN.0000077407.90309.65 PubMedCrossRefGoogle Scholar
  28. Jayaprakasam B, Vanisree M, Zhang Y et al (2006) Impact of alkyl esters of caffeic and ferulic acids on tumor cell proliferation, cyclooxygenase enzyme, and lipid peroxidation. J Agric Food Chem 54:5375–5381. doi: 10.1021/jf060899p PubMedCrossRefGoogle Scholar
  29. Jin Y, Yan EZ, Fan Y et al (2005) Sodium ferulate prevents amyloid-beta-induced neurotoxicity through suppression of p38 MAPK and upregulation of ERK-1/2 and Akt/protein kinase B in rat hippocampus. Acta Pharmacol Sin 26:943–951. doi: 10.1111/j.1745-7254.2005.00158.x PubMedCrossRefGoogle Scholar
  30. Jin Y, Fan Y, Yan EZ et al (2006) Effects of sodium ferulate on amyloid-beta-induced MKK3/MKK6–p38 MAPK-Hsp27 signal pathway and apoptosis in rat hippocampus. Acta Pharmacol Sin 27:1309–1316. doi: 10.1111/j.1745-7254.2006.00414.x PubMedCrossRefGoogle Scholar
  31. Jung EH, Kim SR, Hwang IK et al (2007) Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice. J Agric Food Chem 55:9800–9804. doi: 10.1021/jf0714463 PubMedCrossRefGoogle Scholar
  32. Kanski J, Aksenova M, Stoyanova A et al (2002) Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure-activity studies. J Nutr Biochem 13:273–281. doi: 10.1016/S0955-2863(01)00215-7 PubMedCrossRefGoogle Scholar
  33. Katsuki H, Nakai S, Hirai Y et al (1990) Interleukin-1 beta inhibits long-term potentiation in the CA3 region of mouse hippocampal slices. Eur J Pharmacol 181:323–326. doi: 10.1016/0014-2999(90)90099-R PubMedCrossRefGoogle Scholar
  34. Khanduja KL, Avti PK, Kumar S et al (2006) Anti-apoptotic activity of caffeic acid, ellagic acid and ferulic acid in normal human peripheral blood mononuclear cells: a Bcl-2 independent mechanism. Biochim Biophys Acta 1760:283–289PubMedGoogle Scholar
  35. King C, Tang W, Ngui J et al (2001) Characterization of rat and human UDP-glucuronosyltransferases responsible for the in vitro glucuronidation of diclofenac. Toxicol Sci 61:49–153. doi: 10.1093/toxsci/61.1.49 PubMedCrossRefGoogle Scholar
  36. Kiritoshi S, Nishikawa T, Sonoda K et al (2003) Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: potential role in diabetic nephropathy. Diabetes 52:2570–2577. doi: 10.2337/diabetes.52.10.2570 PubMedCrossRefGoogle Scholar
  37. Kligman LH (1996) The hairless mouse model for photoaging. Clin Dermatol 14:183–195. doi: 10.1016/0738-081X(95)00154-8 PubMedCrossRefGoogle Scholar
  38. Kligman LH, Akin FJ, Kligman AM (1985) The contributions of UVA and UVB to connective tissue damage in hairless mice. J Invest Dermatol 84:272–276. doi: 10.1111/1523-1747.ep12265353 PubMedCrossRefGoogle Scholar
  39. Kroon PA, Faulds CB, Ryden P et al (1997) Release of Covalently Bound Ferulic Acid from Fiber in the Human Colon. J Agric Food Chem 45:661–667. doi: 10.1021/jf9604403 CrossRefGoogle Scholar
  40. Kurumbail RG, Kiefer JR, Marnett LJ (2001) Cyclooxygenase enzymes: catalysis and inhibition. Curr Opin Struct Biol 11:752–760. doi: 10.1016/S0959-440X(01)00277-9 PubMedCrossRefGoogle Scholar
  41. Li FQ, Su H, Wang J et al (2008) Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting. Int J Pharm 349:274–282. doi: 10.1016/j.ijpharm.2007.08.001 PubMedCrossRefGoogle Scholar
  42. Lin FH, Lin JY, Gupta RD et al (2005) Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. J Invest Dermatol 125:826–832. doi: 10.1111/j.0022-202X.2005.23768.x PubMedCrossRefGoogle Scholar
  43. Lin JY, Tournas JA, Burch JA et al (2008) Topical isoflavones provide effective photoprotection to skin. Photodermatol Photoimmunol Photomed 24:61–66. doi: 10.1111/j.1600-0781.2008.00329.x PubMedCrossRefGoogle Scholar
  44. Makrantonaki E, Zouboulis CC (2007) Molecular mechanisms of skin aging: state of the art. Ann N Y Acad Sci 1119:40–50. doi: 10.1196/annals.1404.027 PubMedCrossRefGoogle Scholar
  45. Mancuso C (2004) Heme oxygenase and its products in the nervous system. Antioxid Redox Signal 6:878–887PubMedGoogle Scholar
  46. Mancuso C, Pani G, Calabrese V (2006) Bilirubin: an endogenous scavenger of nitric oxide and reactive nitrogen species. Redox Rep 11:207–213. doi: 10.1179/135100006X154978 PubMedCrossRefGoogle Scholar
  47. Mancuso C, Bates TE, Butterfield DA et al (2007a) Natural antioxidants in Alzheimer’s disease. Expert Opin Investig Drugs 16:1921–1931. doi: 10.1517/13543784.16.12.1921 PubMedCrossRefGoogle Scholar
  48. Mancuso C, Scapagnini G, Currò D et al (2007b) Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 12:1107–1123. doi: 10.2741/2130 PubMedCrossRefGoogle Scholar
  49. Ohsaki AY, Shirakawa H, Koseki T, Komai M (2008) Novel effects of a single administration of ferulic acid on the regulation of blood pressure and the hepatic lipid metabolic profile in stroke-prone spontaneously hypertensive rats. J Agric Food Chem 56(8):2825–2830PubMedCrossRefGoogle Scholar
  50. Ou S, Kwok KC (2004) Ferulic acid: pharmaceutical functions, preparation and applications in food. J Sci Food Agric 84:1261–1269. doi: 10.1002/jsfa.1873 CrossRefGoogle Scholar
  51. Patrono C, Patrignani P, García Rodríguez LA (2001) Cyclooxygenase-selective inhibition of prostanoid formation: transducing biochemical selectivity into clinical read-outs. J Clin Invest 108(1):7–13PubMedGoogle Scholar
  52. Poquet L, Clifford MN, Williamson G (2008) Transport and metabolism of ferulic acid through the colonic epithelium. Drug Metab Dispos 36:190–197. doi: 10.1124/dmd.107.017558 PubMedCrossRefGoogle Scholar
  53. Preziosi P, Loscalzo B (1957a) Pharmacodynamic research on the active principle of Cynara scolimus(1, 4-dicaffeiylquinic acid): effect on blood cholesterol values & on triton-induced hypercholesterolemia. Boll Soc Ital Biol Sper 33:679–682PubMedGoogle Scholar
  54. Preziosi P, Loscalzo B (1957b) Experimental evaluation of 1, 4-dicaffeiylquinic acid, the active principle of artichoke. Arch Ital Sci Farmacol 7:249–296PubMedGoogle Scholar
  55. Preziosi P, Loscalzo B (1958) Pharmacological properties of 1, 4 dicaffeylquinic acid, the active principle of Cynara scolimus. Arch Int Pharmacodyn Ther 117:63–80PubMedGoogle Scholar
  56. Preziosi P, Loscalzo B, Bianchi A (1957) Pharmacodynamic research on the active principle of Cynara scolimus (1, 4-dicaffeiylquinic acid): effect on choleresis. Boll Soc Ital Biol Sper 33:672–674PubMedGoogle Scholar
  57. Qin J, Chen D, Hu H (2007) Body distributioin of RGD-mediated liposome in brain-targeting drug delivery. Yakugaku Zasshi 127:1497–1501. doi: 10.1248/yakushi.127.1497 PubMedCrossRefGoogle Scholar
  58. Rattan SI (2008a) Hormesis in aging. Ageing Res Rev 7:63–78. doi: 10.1016/j.arr.2007.03.002 PubMedCrossRefGoogle Scholar
  59. Rattan SI (2008b) Principles and practice of hormetic treatment of aging and age-related diseases. Hum Exp Toxicol 27:151–154. doi: 10.1177/0960327107083409 PubMedCrossRefGoogle Scholar
  60. Rechner AR, Pannala AS, Rice-Evans CA (2001a) Caffeic acid derivatives in artichoke extract are metabolised to phenolic acids in vivo. Free Radic Res 35:195–202. doi: 10.1080/10715760100300741 PubMedCrossRefGoogle Scholar
  61. Rechner AR, Spencer JP, Kuhnle G et al (2001b) Novel biomarkers of the metabolism of caffeic acid derivatives in vivo. Free Radic Biol Med 30:1213–1222. doi: 10.1016/S0891-5849(01)00506-8 PubMedCrossRefGoogle Scholar
  62. Riccioni G, Bucciarelli T, Mancini B et al (2007) The role of the antioxidant vitamin supplementation in the prevention of cardiovascular diseases. Expert Opin Investig Drugs 16:25–32. doi: 10.1517/13543784.16.1.25 PubMedCrossRefGoogle Scholar
  63. Robbie L, Libby P (2001) Inflammation and atherothrombosis. Ann N Y Acad Sci 947:167–179PubMedGoogle Scholar
  64. Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9:180–186. doi: 10.1016/S0955-0674(97)80061-0 PubMedCrossRefGoogle Scholar
  65. Rondini L, Peyrat-Maillard MN, Marsset-Baglieri A et al (2002) Sulfated ferulic acid is the main in vivo metabolite found after short-term ingestion of free ferulic acid in rats. J Agric Food Chem 50:3037–3041. doi: 10.1021/jf011295i PubMedCrossRefGoogle Scholar
  66. Rondini L, Peyrat-Maillard MN, Marsset-Baglieri A et al (2004) Bound ferulic acid from bran is more bioavailable than the free compound in rat. J Agric Food Chem 52:4338–4343. doi: 10.1021/jf0348323 PubMedCrossRefGoogle Scholar
  67. Rouzer CA, Marnett LJ (2003) Mechanism of free radical oxygenation of polyunsaturated fatty acids by cyclooxygenases. Chem Rev 103:2239–2304. doi: 10.1021/cr000068x PubMedCrossRefGoogle Scholar
  68. Saija A, Tomaino A, Trombetta D et al (2000) In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective agents. Int J Pharm 199:39–47. doi: 10.1016/S0378-5173(00)00358-6 PubMedCrossRefGoogle Scholar
  69. Saulnier L, Vigouroux J, Thibault JF (1995) Isolation and partial characterization of feruloylated oligosaccharides from maize bran. Carbohydr Res 272:241–253. doi: 10.1016/0008-6215(95)00053-V PubMedCrossRefGoogle Scholar
  70. Scapagnini G, Butterfield DA, Colombrita C et al (2004) Ethyl ferulate, a lipophilic polyphenol, induces HO-1 and protects rat neurons against oxidative stress. Antioxid Redox Signal 6:811–818PubMedGoogle Scholar
  71. Silberberg M, Morand C, Mathevon T et al (2006) The bioavailability of polyphenols is highly governed by the capacity of the intestine and of the liver to secrete conjugated metabolites. Eur J Nutr 45:88–96. doi: 10.1007/s00394-005-0568-5 PubMedCrossRefGoogle Scholar
  72. Souto EB, Anselmi C, Centini M et al (2005) Preparation and characterization of n-dodecyl-ferulate-loaded solid lipid nanoparticles (SLN). Int J Pharm 295:261–268. doi: 10.1016/j.ijpharm.2005.02.005 PubMedCrossRefGoogle Scholar
  73. Srinivasan M, Rukkumani R, Ram Sudheer A et al (2005) Ferulic acid, a natural protector against carbon tetrachloride-induced toxicity. Fundam Clin Pharmacol 19:491–496. doi: 10.1111/j.1472-8206.2005.00332.x PubMedCrossRefGoogle Scholar
  74. Sudheer AR, Muthukumaran S, Kalpana C et al (2007) Protective effect of ferulic acid on nicotine-induced DNA damage and cellular changes in cultured rat peripheral blood lymphocytes: a comparison with N-acetylcysteine. Toxicol In Vitro 21:576–585. doi: 10.1016/j.tiv.2006.11.006 PubMedCrossRefGoogle Scholar
  75. Sultana R, Ravagna A, Mohmmad-Abdul H et al (2005) Ferulic acid ethyl ester protects neurons against amyloid beta- peptide(1–42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. J Neurochem 92:749–758. doi: 10.1111/j.1471-4159.2004.02899.x PubMedCrossRefGoogle Scholar
  76. Suzuki A, Kagawa D, Fujii A et al (2002) Short- and long-term effects of ferulic acid on blood pressure in spontaneously hypertensive rats. Am J Hypertens 15:351–357. doi: 10.1016/S0895-7061(01)02337-8 PubMedCrossRefGoogle Scholar
  77. Suzuki A, Yamamoto M, Jokura H et al (2007) Ferulic acid restores endothelium-dependent vasodilation in aortas of spontaneously hypertensive rats. Am J Hypertens 20:508–513. doi: 10.1016/j.amjhyper.2006.11.008 PubMedCrossRefGoogle Scholar
  78. Thun MJ, Henley SJ, Patrono C (2002) Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 94:252–266PubMedGoogle Scholar
  79. van der Logt EM, Roelofs HM, Nagengast FM et al (2003) Induction of rat hepatic and intestinal UDP-glucuronosyltransferases by naturally occurring dietary anticarcinogens. Carcinogenesis 24:1651–1656. doi: 10.1093/carcin/bgg117 PubMedCrossRefGoogle Scholar
  80. von Herrath M, Sanda S, Herold K (2007) Type 1 diabetes as a relapsing-remitting disease? Nat Rev Immunol 7:988–994. doi: 10.1038/nri2192 CrossRefGoogle Scholar
  81. Wang B, Ouyang J, Liu Y et al (2004) Sodium ferulate inhibits atherosclerogenesis in hyperlipidemia rabbits. J Cardiovasc Pharmacol 43:549–554. doi: 10.1097/00005344-200404000-00010 PubMedCrossRefGoogle Scholar
  82. Wang X, Martindale JL, Liu Y et al (1998) The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J 333:291–300PubMedGoogle Scholar
  83. Yamagata K, Andreasson KI, Kaufmann WE et al (1993) Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 11:371–386. doi: 10.1016/0896-6273(93)90192-T PubMedCrossRefGoogle Scholar
  84. Yan JJ, Cho JY, Kim HS et al (2001) Protection against beta-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br J Pharmacol 133:89–96. doi: 10.1038/sj.bjp. 0704047 PubMedCrossRefGoogle Scholar
  85. Zhao Z, Egashira Y, Sanada H (2003) Ferulic acid sugar esters are recovered in rat plasma and urine mainly as the sulfoglucuronide of ferulic acid. J Nutr 133:1355–1361PubMedGoogle Scholar
  86. Zhao Z, Egashira Y, Sanada H (2004) Ferulic acid is quickly absorbed from rat stomach as the free form and then conjugated mainly in liver. J Nutr 134:3083–3088PubMedGoogle Scholar
  87. Zhou H, Li XM, Meinkoth J et al (2000) Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol 151:483–494. doi: 10.1083/jcb.151.3.483 PubMedCrossRefGoogle Scholar
  88. Zhui Y, Jing-Ping OY, Yongming L et al (2000) Experimental study of the antiatherogenesis effect of Chinese medicine angelica and its mechanisms. Clin Hemorheol Microcirc 22:305–310PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Eugenio Barone
    • 1
  • Vittorio Calabrese
    • 2
  • Cesare Mancuso
    • 1
  1. 1.Institute of PharmacologyCatholic University School of MedicineRomeItaly
  2. 2.Department of ChemistryUniversity of CataniaCataniaItaly

Personalised recommendations