Biogerontology

, Volume 8, Issue 5, pp 527–535 | Cite as

Nonclassical export pathway: overexpression of NCE102 reduces protein and DNA damage and prolongs lifespan in an SGS1 deficient Saccharomyces cerevisiae

  • Liesbeth Desmyter
  • Jan Verstraelen
  • Sylviane Dewaele
  • Claude Libert
  • Roland Contreras
  • Cuiying Chen
Research Article

Abstract

In this study, we used our recently developed screening method, Bud-Scar-based Screening (BSS), to screen a yeast cDNA expression library in an SGS1 deletion BY4742 yeast strain. One gene involved in a nonclassical export pathway, NCE102, was found to extend the life span of Δsgs1 yeast. Deletion of NCE102 in a wild type yeast strain increased its sensitivity to oxidative stress upon diethylmaleate (DEM) treatment but did not shorten its lifespan, indicating that this gene is not essential in determining yeast lifespan. Transformation of NCE102 into either Δnce102 or Δsgs1 strains could rescue its tolerance to DEM stress, indicating that NCE102 is protective during oxidative stress. Moreover, overexpression of NCE102 in Δsgs1 strain leads to reduced protein damage. However, overexpression of NCE102 in wild type yeast strain BY4742 neither protected against oxidative stress due to DEM nor extended yeast lifespan compared to its parental wild type strain, indicating that nonclassical export is redundant and DNA repair is fully sufficient in the wild type strain. We therefore demonstrate that a nonclassical export pathway functions as an alternative clearance/detoxification pathway to eliminate damaged material, when the basic repair pathway is not sufficient.

Keywords

Aging NCE102 SGS1 Budding yeast Nonclassical export pathway Oxidative stress Lifespan 

Supplementary material

References

  1. Barker MG, Brimage LJ, Smart KA (1999) Effect of Cu, Zn superoxide dismutase disruption mutation on replicative senescence in Saccharomyces cerevisiae. FEMS Microbiol Lett 177:199–204PubMedCrossRefGoogle Scholar
  2. Breitenbach M (2005) Apoptosis, ageing and redox homeostasis in yeasts. FEMS Yeast Res 5:1191–1192PubMedCrossRefGoogle Scholar
  3. Cairo G, Recalcati S, Pietrangelo A, Minotti G (2002) The iron regulatory proteins: targets and modulators of free radical reactions and oxidative damage. Free Radic Biol Med 32:1237–1243PubMedCrossRefGoogle Scholar
  4. Chen C, Dewaele S, Braeckman B, Desmyter L, Verstraelen J, Borgonie G, Vanfleteren J, Contreras R (2003) A high-throughput screening system for genes extending life-span. Exp Gerontol 38:1051–1063PubMedCrossRefGoogle Scholar
  5. Cleves AE, Cooper DN, Barondes SH, Kelly RB (1996) A new pathway for protein export in Saccharomyces cerevisiae. J Cell Biol 133:1017–1026PubMedCrossRefGoogle Scholar
  6. Drakulic T, Temple MD, Guido R, Jarolim S, Breitenbach M, Attfield PV, Dawes IW (2005) Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res 5:1215–1228PubMedCrossRefGoogle Scholar
  7. Elledge SJ, Mulligan JT, Ramer SW, Spottswood M, Davis RW (1991) Lambda YES: a multifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proc Natl Acad Sci USA 88:1731–1735PubMedCrossRefGoogle Scholar
  8. Frei C, Gasser SM (2000) The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes Dev 14:81–96PubMedGoogle Scholar
  9. Fry RC, Sambandan TG, Rha C (2003) DNA damage and stress transcripts in Saccharomyces cerevisiae mutant sgs1. Mech Ageing Dev 124:839–846PubMedCrossRefGoogle Scholar
  10. Heeren G, Jarolim S, Laun P, Rinnerthaler M, Stolze K, Perrone GG, Kohlwein SD, Nohl H, Dawes IW, Breitenbach M (2004) The role of respiration, reactive oxygen species and oxidative stress in mother cell-specific ageing of yeast strains defective in the RAS signalling pathway. FEMS Yeast Res 5:157–167PubMedCrossRefGoogle Scholar
  11. Helmberg A (2001) DNA-microarrays: novel techniques to study aging and guide gerontologic medicine. Exp Gerontol 36:1189–1198PubMedCrossRefGoogle Scholar
  12. Hickson ID (2003) RecQ helicases: caretakers of the genome. Nat Rev Cancer 3:169–178PubMedCrossRefGoogle Scholar
  13. Hlavata L, Nystrom T (2003) Ras proteins control mitochondrial biogenesis and function in Saccharomyces cerevisiae. Folia Microbiol (Praha) 48:725–730CrossRefGoogle Scholar
  14. Jarolim S, Millen J, Heeren G, Laun P, Goldfarb DS, Breitenbach M (2004) A novel assay for replicative lifespan in Saccharomyces cerevisiae. FEMS Yeast Res 5:169–177PubMedCrossRefGoogle Scholar
  15. Jazwinski SM (2000) Coordination of metabolic activity and stress resistance in yeast longevity. Results Probl Cell Differ 29:21–44PubMedGoogle Scholar
  16. Jones DP (2006) Extracellular redox state: refining the definition of oxidative stress in aging. Rejuvenation Res 9:169–181PubMedCrossRefGoogle Scholar
  17. Kaeberlein M, Kennedy BK (2005) Large-scale identification in yeast of conserved ageing genes. Mech Ageing Dev 126:17–21PubMedCrossRefGoogle Scholar
  18. Kaeberlein M, Kirkland KT, Fields S, Kennedy BK (2005) Genes determining yeast replicative life span in a long-lived genetic background. Mech Ageing Dev 126:491–504PubMedCrossRefGoogle Scholar
  19. Kennedy BK, Austriaco NR Jr, Guarente L (1994) Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J Cell Biol 127:1985–1993PubMedCrossRefGoogle Scholar
  20. Kennedy S (1990) A review of the 1988 European seal morbillivirus epizootic. Vet Rec 127:563–567PubMedGoogle Scholar
  21. Laun P, Ramachandran L, Jarolim S, Herker E, Liang P, Wang J, Weinberger M, Burhans DT, Suter B, Madeo F, Burhans WC, Breitenbach M (2005) A comparison of the aging and apoptotic transcriptome of Saccharomyces cerevisiae. FEMS Yeast Res 5:1261–1272PubMedCrossRefGoogle Scholar
  22. Mortimer RK, Johnston JR (1959) Life span of individual yeast cells. Nature 183:1751–1752PubMedCrossRefGoogle Scholar
  23. Mullen JR, Kaliraman V, Ibrahim SS, Brill SJ (2001) Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae. Genetics 157:103–118PubMedGoogle Scholar
  24. Nickel W (2003) The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem 270:2109–2119PubMedCrossRefGoogle Scholar
  25. Nombela C, Gil C, Chaffin WL (2006) Non-conventional protein secretion in yeast. Trends Microbiol 14:15–21PubMedCrossRefGoogle Scholar
  26. Pachler K, Karl T, Kolmann K, Mehlmer N, Eder M, Loeffler M, Oender K, Hochleitner EO, Lottspeich F, Bresgen N, Richter K, Breitenbach M, Koller L (2004) Functional interaction in establishment of ribosomal integrity between small subunit protein rpS6 and translational regulator rpL10/Grc5p. FEMS Yeast Res 5:271–280PubMedCrossRefGoogle Scholar
  27. Powell CD, Quain DE, Smart KA (2000) The impact of media composition and petite mutation on the longevity of a polyploid brewing yeast strain. Lett Appl Microbiol 31:46–51PubMedCrossRefGoogle Scholar
  28. Schaus SE, Cavalieri D, Myers AG (2001) Gene transcription analysis of Saccharomyces cerevisiae exposed to neocarzinostatin protein-chromophore complex reveals evidence of DNA damage, a potential mechanism of resistance, and consequences of prolonged exposure. Proc Natl Acad Sci USA 98:11075–11080PubMedCrossRefGoogle Scholar
  29. Scheiblhofer S, Weiss R, Durnberger H, Mostbock S, Breitenbach M, Livey I, Thalhamer J (2003) A DNA vaccine encoding the outer surface protein C from Borrelia burgdorferi is able to induce protective immune responses. Microbes Infect 5:939–946PubMedCrossRefGoogle Scholar
  30. Sinclair DA, Mills K, Guarente L (1997) Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277:1313–1316PubMedCrossRefGoogle Scholar
  31. Stadtman ER (1988) Biochemical markers of aging. Exp Gerontol 23:327–347PubMedCrossRefGoogle Scholar
  32. Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218PubMedCrossRefGoogle Scholar
  33. Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579PubMedGoogle Scholar
  34. Wanke V, Accorsi K, Porro D, Esposito F, Russo T, Vanoni M (1999) In budding yeast, reactive oxygen species induce both RAS-dependent and RAS-independent cell cycle-specific arrest. Mol Microbiol 32:753–764PubMedCrossRefGoogle Scholar
  35. Watt PM, Hickson ID, Borts RH, Louis EJ (1996) SGS1, a homologue of the Bloom’s and Werner’s syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 144:935–945PubMedGoogle Scholar
  36. Weindruch R, Kayo T, Lee CK, Prolla TA (2001) Microarray profiling of gene expression in aging and its alteration by caloric restriction in mice. J Nutr 131:918S–923SPubMedGoogle Scholar
  37. Yamagata K, Kato J, Shimamoto A, Goto M, Furuichi Y, Ikeda H (1998) Bloom’s and Werner’s syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases. Proc Natl Acad Sci USA 95:8733–8738PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Liesbeth Desmyter
    • 1
    • 2
  • Jan Verstraelen
    • 1
    • 2
  • Sylviane Dewaele
    • 1
    • 2
  • Claude Libert
    • 1
    • 2
  • Roland Contreras
    • 1
    • 2
  • Cuiying Chen
    • 1
    • 2
  1. 1.Department for Molecular Biomedical ResearchVIBGhentBelgium
  2. 2.Department of Molecular BiologyGhent University GhentBelgium

Personalised recommendations