Biogerontology

, Volume 6, Issue 2, pp 101–111 | Cite as

Analysis of telomere length and telomerase activity in tree species of various life-spans, and with age in the bristlecone pine Pinus longaeva

Research article

Abstract

Normal somatic cells have a finite replicative capacity. With each cell division, telomeres (the physical ends of linear chromosomes) progressively shorten until they reach a critical length, at which point the cells enter replicative senescence. Some cells maintain telomere length by the action of the telomerase enzyme. The bristlecone pine, Pinus longaeva, is the oldest known living eukaryotic organism, with the oldest on record turning 4770 years old in 2005. To determine what changes occur, if any, in telomere length and telomerase activity with age, and what roles, if any, telomere length and telomerase activity may play in contributing to the increased life-span and longevity of P. longaeva with age, as well as in other tree species of various life-spans, we undertook a detailed investigation of telomere length and telomerase activity in such trees. The results from this study support the hypothesis that both increased telomere length and telomerase activity may directly/indirectly contribute to the increased life-span and longevity evident in long-lived pine trees (2000–5000 year life-spans) compared to medium-lived (400–500 year life-span) and short-lived (100–200 year life-span) pine trees, as well as in P. longaeva with age.

Keywords

aging longevity Pinus aristata Sequoia sempervirens senescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allsopp, RC, Vaziri, H, Patterson, C, Goldstein, S, Younglai, EV, Futcher, AB, Greider, CW, Harley, CB 1992Telomere length predicts replicative capacity of human fibroblastsProc Natl Acad Sci USA891011410118PubMedGoogle Scholar
  2. Bernd, A, Batke, E, Zahn, RK, Muller, WE 1982Age-dependent gene induction in quail oviduct. XV. Alterations of the poly(A)-associated protein pattern and of the poly(A) chain length of mRNAMech Ageing Dev19361377PubMedGoogle Scholar
  3. Cech, TR, Nakamura, TM, Linger, J 1997Telomerase is a true reverse transcriptase. A reviewBiochemistry (Mosc)6212021205Google Scholar
  4. Connor, K, Lanner, R 1990Effects of tree age on secondary xylem and phloem anatomy in stems of great basin bristlecone pineAm J Bot7710701077Google Scholar
  5. Connor, K, Lanner, R 1991Cuticle thickness and chlorophyll content in bristlecone pine needles of various agesBull Torrey Bot Club118184187Google Scholar
  6. Fajkus, J, Kovarik, A, Kralovics, R 1996Telomerase activity in plant cellsFEBS Lett391307309PubMedGoogle Scholar
  7. Flanary, BE, Streit, WJ 2003Telomeres shorten with age in rat cerebellum and cortex in vivoJ Anti-Aging Med6299308PubMedGoogle Scholar
  8. Flanary, BE, Streit, WJ 2004Progressive telomere shortening occurs in cultured rat microglia, but not astrocytesGlia457588PubMedGoogle Scholar
  9. Fossel, M 2000Cell senescence in human aging: A review of the theoryIn vivo142934PubMedGoogle Scholar
  10. Funk, WD, Wang, CK, Shelton, DN, Harley, CB, Pagon, GD, Hoeffler, WK 2000Telomerase expression restores dermal integrity to in vitro-aged fibroblasts in a reconstituted skin modelExp Cell Res258270278PubMedGoogle Scholar
  11. Ganal, MW, Lapitan, NL, Tanksley, SD 1991Macrostructure of the tomato telomeresPlant Cell38794PubMedGoogle Scholar
  12. Greider, CW, Blackburn, EH 1985Identification of a specific telomere terminal transferase enzyme with two kinds of primer specificityCell51405413Google Scholar
  13. Harley, CB, Futcher, B, Greider, CW 1990Telomeres shorten during ageing of human fibroblastsNature345458460PubMedGoogle Scholar
  14. Harley, CB, Vaziri, H, Counter, CM, Allsopp, RC 1992The telomere hypothesis of cellular agingExp Gerontol27375382PubMedGoogle Scholar
  15. Hayflick, L 1961The serial cultivation of human diploid cell strainsExp Cell Res25585621Google Scholar
  16. Hayflick, L 1965The limited in vitro lifetime of human diploid cell strainsExp Cell Res37614636PubMedGoogle Scholar
  17. Kajstura, J, Pertoldi, B, Leri, A, Beltrami, CA, Deptala, A, Darzynkiewicz, Z, Anversa, P 2000Telomere shortening is an in vivo marker of myocyte replication and agingAm J Pathol156813819PubMedGoogle Scholar
  18. Kipling, D 1995The TelomereOxford University PressNew York, NYGoogle Scholar
  19. Lanner, RM, Connor, KF 2001Do bristlecone pine senesce?Exp Gerontol36675685PubMedGoogle Scholar
  20. Lanner, RM 2002Why do trees live so long?Ageing Res Rev1653671PubMedGoogle Scholar
  21. Larson, DW 2001The paradox of great longevity in a short-lived tree speciesExp Gerontol36651673PubMedGoogle Scholar
  22. Lindsey, J, McGill, NI, Lindsey, LA, Green, DK, Cooke, HJ 1991In vivo loss of telomere repeats with age in humansMutat Res2564548PubMedGoogle Scholar
  23. McKnight, TD, Fitzgerald, MS, Shippen, DE 1997Plant telomeres and telomerases. A reviewBiochemistry (Mosc)1112241231Google Scholar
  24. Olovnikov, AM 1971Principle of marginotomy in template synthesis of polynucleotidesDoklady Akademii Nauk (SSSR)20114961499Google Scholar
  25. Olovnikov, AM 1973A theory of marginotomy. The incomplete copying of template margin in enzymatic synthesis of polynucleotides and biological significance of the phenomenonJ Theor Biol41181190PubMedGoogle Scholar
  26. Olovnikov, AM 1996Telomeres, telomerase, and aging: Origin of the theoryExp Gerontol31443448PubMedGoogle Scholar
  27. Rotkova, G, Sklenickova, M, Dvorackova, M, Syrova, E, Leitch, AR, Fajkus, J 2004An evolutionary change in telomere sequence motif within the plant section Asparagales had significance for telomere nucleoprotein complexesCytogenet Genome Res107132138PubMedGoogle Scholar
  28. Schulman, E 1958Bristlecone pine, oldest known living thingNatl Geogr Mag113354372Google Scholar
  29. Shay, JW 1999At the end of the millennium, a view of the endNat Genet23382383PubMedGoogle Scholar
  30. Shelton, DN, Chang, E, Whittier, PS, Choi, D, Funk, WD 1999Microarray analysis of replicative senescenceCurr Biol9939945PubMedGoogle Scholar
  31. Spaulding, C, Guo, W, Effros, RB 1999Resistance to apoptosis in human CD8+ T cells that reach replicative senescence after multiple rounds of antigen-specific proliferationExp Gerontol34633644PubMedGoogle Scholar
  32. Sykorova, E, Lim, KY, Kunicka, Z, Chase, MW, Bennett, MD, Fajkus, J, Leitch, AR 2003Telomere variability in the monocotyledonous plant order AsparagalesProc R Soc Lond B Biol Sci27018931904Google Scholar
  33. Watson, JD 1972Origin of concatemeric T7 DNANat New Biol239197201PubMedGoogle Scholar
  34. Westing, AH 1964The longevity and aging of treesGerontologist41015Google Scholar
  35. Wright, WE, Shay, JW 2002Historical claims and current interpretations of replicative agingNat Biotechnol20682688PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Neuroscience, McKnight Brain InstituteUniversity of Florida College of MedicineGainesvilleUSA
  2. 2.Department of PhysicsCatholic University of AmericaWashingtonUSA
  3. 3.Goddard Space Flight CenterNational Aeronautics and Space AdministrationGreenbeltUSA
  4. 4.Academy of ScienceInstitute of GeologyPragueCzech Republic

Personalised recommendations