Advertisement

Biogerontology

, Volume 6, Issue 4, pp 283–290 | Cite as

Free Radical Mechanisms of Aging Processes Under Physiological Conditions

  • Igor B Afanas’ev
Opinion Article

Abstract

Free radical theory of aging predicts crucial role for free radicals produced by external factors (environmental contamination, irradiation, etc.) or pathological disorders (hereditary diseases or infections) in the initiation of aging. Does it mean that under hypothetical completely physiological conditions aging processes could be fully suppressed? To answer this question, we will consider the possible mechanisms of free radical formation in such hypothetical state. There are two major mechanisms, which are responsible for free radical-mediated damage in a living organism: superoxide overproduction by mitochondria and nonenzymatic lipid peroxidation. Superoxide overproduction causes the inhibition of nitric oxide formation and bioavailability, one of principal characteristics of aging, while nonenzymatic lipid peroxidation, which is already demonstrated at physiological conditions, produces toxic isoprostanes. We suggest that major initiators of free radical-mediated damaging processes leading to aging at physiological state are oxidizable components of diet. The possibility of inhibition of aging processes by supplementation of nontoxic antioxidants and calorie restriction is discussed. Scheme demonstrating the potential mechanisms of starting the free radical-mediated aging processes is presented, which are discussed on the grounds of known literature data.

Keywords

aging antioxidants diet nitric oxide physiological state superoxide 

Abbreviations

AA

arachidonic acid

Akt

protein kinase B

DHA

docosahexaenoic acid

ENOS

endothelial nitric synthase

INOS

inducible nitric synthase

LOX

lipoxygenase

PGHS

prostaglandin H synthase

SOD

superoxide dismutase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, A, Messina, E, Sherman, B, Wang, Z, Huang, H, Linke, A, Hintze, TH 2003NAD(P)H oxidase-generated superoxide anion accounts for reduced control of myocardial O2 consumption by NO in old Fischer 344 ratsAm J Physiol Heart Circ Physiol285H1015H1022PubMedGoogle Scholar
  2. Adler, S, Huang, H, Wolin, MS, Kaminski, PM 2004Oxidant stress leads to impaired regulation of renal cortical oxygen consumption by nitric oxide in the aging kidneyJ Am Soc Nephrol155260CrossRefPubMedGoogle Scholar
  3. Afanas’ev, IB 2004aInterplay between superoxide and nitric oxide in aging and diseasesBiogerontology5267270Google Scholar
  4. Afanas’ev, IB 2004bMechanism of superoxide-mediated damage. Relevance to mitochondrial agingAnn NY Acad Sci1019343345Google Scholar
  5. Afanas’ev, IB 2004cOn mechanism of superoxide signaling under physiological and pathophysiological conditionsMed Hypotheses64127129Google Scholar
  6. Ames, BN, Shigenaga, MK, Hagen, TM 1993Oxidant, antioxidants, and the degenerative diseases of agingProc Natl Acad Sci USA9079157922PubMedGoogle Scholar
  7. Amrani, M, Goodwin, AT, Gray, CC, Yacoub, MH 1996Ageing is associated with reduced basal and stimulated release of nitric oxide by the coronary endotheliumActa Physiol Scand1577984CrossRefPubMedGoogle Scholar
  8. Antier, D, Carswell, HV, Brosnan, MJ, Hamilton, CA, Macrae, IM, Groves, S, Jardine, E, Reid, JL, Dominiczak, AE 2004Increased levels of superoxide in brains from old female ratsFree Radic Res38177183PubMedCrossRefGoogle Scholar
  9. Bandy, B, Davison, AJ 1990Mitochondrial mutations may increase oxidative stress: Implications for carcinogenesis and aging?Free Radic Biol Med8523539CrossRefPubMedGoogle Scholar
  10. Blackwell, KA, Sorenson, JP, Richardson, DM, Smith, LA, Suda, O, Nath, K, Katusic, ZS 2004Mechanisms of aging-induced impairment of endothelium-dependent relaxation: role of tetrahydrobiopterinAm J Physiol Heart Circ Physiol287H2448H2453CrossRefPubMedGoogle Scholar
  11. Brunetti, L, Michelotto, B, Orlando, G, Recinella, L, Nisio, C, Ciabattoni, G, Vacca, M 2004Aging increases amyloid β-peptide-induced 8-iso-prostaglandin F2α rekease from rat brainNeurobiol Aging25125129CrossRefPubMedGoogle Scholar
  12. Chaves, MM, Rodrigues, ALP, dos Reis, AP, Gerzstein, NC, Noguera-Machado, JA 2002Correlation between NADPH oxidase and protein kinase C in the ROS production by human granulocytes related to ageGerontology48354359Google Scholar
  13. Chisolm, GM, Ma, G, Irwin, KC, Martin, LL, Gunderson, KG, Linberg, LF, Morel, DW, DiCorleto, PE 19947ß-Hydroperoxycholest-5-en-3ß-ol, a component of human atherosclerotic lesions, is the primary cytotoxin of oxidized human low density lipoproteinProc Natl Acad Sci USA911145211456PubMedGoogle Scholar
  14. Chou, T-C, Yen, M-H, Li, C-Y, Ding, Y-A 1998Alterations of nitric oxide synthase expression with aging and hypertension in ratsHypertension31643648PubMedGoogle Scholar
  15. Csiszar, A, Ungvari, Z, Edwards, JG, Kaminski, P, Wolin, MS, Koller, A, Kaley, G 2002Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar functionCirc Res9011591166CrossRefPubMedGoogle Scholar
  16. Didion, SP, Hathaway, CA, Faraci, FM 2001Superoxide levels and function of cerebral blood vessels after inhibition of CuZn-SODAm J Physiol Heart Circ Physiol281H1697H1703PubMedGoogle Scholar
  17. Farmer, KJ, Sohal, RS 1989Relationship between superoxide anion radical generation and aging in the housefly, Musca  domestica Free Radic Biol Med72329CrossRefPubMedGoogle Scholar
  18. Hagopian, K, Harper, M-E, Ram, JJ, Humble, SJ, Weindruch, R, Ramsey, JJ 2005Long-term calorie restriction reduces proton leak and hydrogen peroxide production in liver mitochondriaAm J Physiol Endocrinol Metab288E674E684PubMedGoogle Scholar
  19. Hamilton, CA, Brosnan, MJ, McIntyre, M, Graham, D, Dominiczak, AF 2001Superoxide excess in hypertension and aging: a common cause of endothelial dysfunctionHypertension37529534PubMedGoogle Scholar
  20. Hoffmann, J, Haendeler, J, Aicher, A, Rossig, L, Vasa, M, Zeiher, AM, Dimmeler, S 2001Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli. Important role of nitric oxideCirc Res89709715PubMedGoogle Scholar
  21. Ikeyama S, Kokkonen G, Shack S, Wang X-T and Holbrook NJ (2001) Loss in oxidative stress tolerance with aging linked to reduced extracellular signal-regulated kinase and Akt kinase activities. FASEB J : 1096/fj.01–0409fjeGoogle Scholar
  22. Ikeyama, S, Wang, X-T, Li, J, Podlutsky, A, Martindale, JL, Kokkonen, G, Huizen, R, Gorospe, M, Holbrook, NJ 2003Expression of the pro-apoptotic gene gadd153/chop is elevated in liver with aging and sensitizes cells to oxidant injuryJ Biol Chem2781672616731CrossRefPubMedGoogle Scholar
  23. Ishii, N, Senoo-Matsuda, N, Miyake, K, Yasuda, K, Ishii, T, Hartman, PS, Furukawa, S 2004Coenzyme Q10 can prolong C. elegans lifespan by lowering oxidative stressMech Ageing Dev1254146CrossRefPubMedGoogle Scholar
  24. Janssen, LJ 2001Isoprostanes: an over-review and putative roles in pulmonary pathophysiologyAm J Physiol Lung Cell Mol Physiol280L1067L1082PubMedGoogle Scholar
  25. Jun, T, Ke-yan, F, Catalano, M 1996Increased superoxide anion production in humans: a possible mechanism for the pathogenesis of hypertensionJ Hum Hypertens10305309PubMedGoogle Scholar
  26. Kennedy, MA, Rakoczy, SG, Brown-Borg, HM 2003Long-living Ames dwarf mouse hepatocytes readily undergo apoptosisExp Gerontol389971008CrossRefPubMedGoogle Scholar
  27. Khan, MAS, Oubrahim, H, Stadman, ER 2004Inhibition of apoptosis in acute promyelocytic leukemia cells leads to increases in levels of oxidized protein and LMP2 immunoproteasomeProc Nat Acad Sci USA1011156011565PubMedGoogle Scholar
  28. Li, Y, Zhu, H, Trush, MA 1999Detection of mitochondria-derived reactive oxygen species production by the chemilumigenic probes lucigenin and luminolBiochim Biophys Acta1428112PubMedGoogle Scholar
  29. Lopes, GS, Mora, OA, Cerri, P, Faria, FP, Jurkewicz, NH, Jurkiewicz, A, Smaili, SS 2004Mitochondrial alterations and apoptosis in smooth muscle from aged ratsBiochim Biophys Acta1658187194PubMedGoogle Scholar
  30. Madesh, M, Hajnoczky, G 2001VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c releaseJ Cell Biol15610031016Google Scholar
  31. Marineo, G, Marotta, F, Sisti,  2004Cirrhosis progression as a model of accelerated senescence: affecting the biological aging clock by a breakthrough biophysical methodologyAnnl NY Acad Sci1019572576Google Scholar
  32. Mashima, R, Onodera, K, Yamamoto, Y 2000Regioisomeric distribution of cholesteryl linoleate hydroperoxides and hydroxides in plasma from healthy humans provides evidence for free radical-mediated lipid peroxidation in vivo J Lipid Res41109115PubMedGoogle Scholar
  33. Mukai, Y, Shimokawa, H, Higashi, M, Morikawa, K, Matoba, T, Hiroki, Y, Talukder, HMA, Takeshita, A 2002Inhibition of renin-angiotensin system ameliorates endothelial dysfunction associated with aging in ratsArterioscler Thromb Vasc Biol2214451450PubMedGoogle Scholar
  34. O’Donnell, VB, Azzi, A 1996High rates of extracellular superoxide generation by cultured human fibroblasts: involvement of a lipid-metabolizing enzymeBiochem J318805812PubMedGoogle Scholar
  35. Payne, JA, Reckelhoff, JF, Khalil, RA 2003Role of oxidative stress in age-related reduction of NO-cGMP-mediated vascular relaxation in SHRAm J Physiol Regul Integr Comp Physiol285R542R551PubMedGoogle Scholar
  36. Phaneuf, S, Leeuwenburgh, C 2002Cytochrome c release from mitochondria in the ageing heart: a possible mechanism for apoptosis with ageAm J Physiol Regul Integr Comp Physiol282R423R430PubMedGoogle Scholar
  37. Pie, JE, Baek, SY, Kim, HP, Ryu, SD, Chung, WG, Cha, YN, Park, CS 2002Age-related decline of inducible nitric oxide synthase gene expression in primary cultured rat hepatocytesMol Cells13399406PubMedGoogle Scholar
  38. Pollack, M, Phaneuf, S, Dirks, A, Leeuwenburgh, C 2002The role of apoptosis in the normal aging brain, skeletal muscle, and heartAnn NY Acad Sci95993107PubMedGoogle Scholar
  39. Reich, EE, Zackert, WE, Brame, CJ, Chen, Y, Roberts, LJ,II, Hachey, DL, Montine, TJ, Morrow, JD 2000Formation of novel D-ring and E-ring isoprostane-like compounds (D4/E4-neuroprostanes) in vivo from docosahexaenoic acidBiochemistry3923762383CrossRefPubMedGoogle Scholar
  40. Roberts, LJ,II, Montine, TJ, Markesbery, WR, Tapper, AR, Hardy, P, Chemtob, S, Dettbarn, WD, Morrow, JD 1998Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acidJ Biol Chem27313,60513,612CrossRefGoogle Scholar
  41. Roberts, LJ, Salomon, RG, Morrow, JD, Brame, CJ 1999New developments in the isoprostane pathway: identification of novel highly reactive – ketoaldehydes (isolevuglandins) and characterization of their protein adductsFASEB J1311571168PubMedGoogle Scholar
  42. Roberts, LJ,II, Reckelhoff, JF 2001Measurement of F(2)-isoprostanes unveils profound oxidative stress in aged ratsBiochem Biophys Res Commun287254256CrossRefPubMedGoogle Scholar
  43. Smith, AR, Hagen, TM 2003Vascular endothelial dysfunction in aging: loss of Akt-dependent endothelial nitric oxide synthase phosphorylation and partial restoration by (R)-α-lipoic acidBiochem Soc Trans3114471449PubMedGoogle Scholar
  44. Slattery, ML, Kampman, E, Samowitz, W, Caan, BJ, Potter, JD 2000Interplay between dietary inducers of GST and the GSTM-1 genotype in colon cancerInt J Cancer87728733CrossRefPubMedGoogle Scholar
  45. Slattery, ML, Edwards, S, Curtin, K, Schaffer, D, Neuhausen, S 2003Associations between smoking, passive smoking, GSTM-1, NAT2, and rectal cancerCancer Epidemiol Biomarkers Prev12882889PubMedGoogle Scholar
  46. Sun, D, Huang, A, Yan, EH, Wu, Z, Yan, C, Kaminski, PM, Oury, TD, Wolin, MS, Kaley, G 2004Reduced release of nitric oxide to shear stress in mesenteric arteries of aged ratsAm J Physiol Heart Circ Physiol286H2249H2256CrossRefPubMedGoogle Scholar
  47. Taddei, S, Virdis, A, Ghiadoni, L, Salvetti, G, Bernini, G, Magagna, A, Salvetti, A 2001Age-related reduction of NO availability and oxidative stress in humansHypertension38274279PubMedGoogle Scholar
  48. Tirosh, O, Schwartz, B, Zusman, I, Kossoy, G, Yahav, S, Miskin, R 2004Long-living α MUPA transgenic mice exhibit increased mitochondrion-mediated apoptotic capacityAnn NY Acad Sci USA1019439442Google Scholar
  49. Tsabouri, SE, Georgiou, I, Alamanos, I, Bourantas, KL 2000Increased prevalence of GSTM(1) null genotype in patients with myelodysplastic syndrome: a case–control studyActa Haematol104169173CrossRefPubMedGoogle Scholar
  50. Tsai, A, Palmer, G, Hiao, G, Swinney, DC, Kulmacz, RJ 1998Structural characterization of arachidonyl radicals formed by prostaglandin h synthase-2 and prostaglandin h synthase-1 reconstituted with mangano protoporphyrin IXJ Biol Chem27338883894PubMedGoogle Scholar
  51. Tschudi, MG, Barton, M, Bersinger, NA, Moreau, P, Cosentino, F, Noll, G, Malinski, T, Luscher, TF 1996Effect of age on kinetics of nitric oxide release in rat aorta and pulmonary arteryJ Clin Invest98899905PubMedCrossRefGoogle Scholar
  52. Tuominen, EK, Wallace, JA, Kinnunen, PKJ 2002Phospholipid–cytochrome c interaction. Evidence for the extended lipid anchorageJ Biol Chem27788228826CrossRefPubMedGoogle Scholar
  53. Loo, B, Labugger, R, Skepper, JN, Bachschmid, M, Kilo, J, Powell, JM, Palacios-Callender, M, Erusalimsky, JD, Quaschning, T, Malinski, T, Gygi, D, Ullrich, V, Luscher, TF 2000Enhanced peroxynitrite formation is associated with vascular agingJ Exp Med19217311744PubMedGoogle Scholar
  54. Woodman, CR, Price, EM, Laughlin, MH 2003Selected contribution: aging impairs nitric oxide and prostacyclin mediation of endothelium-dependent dilation in soleus feed arteriesJ Appl Physiol9521642170PubMedGoogle Scholar
  55. Yamamoto, Y, Niki, E 1989Presence of cholesteryl ester hydroperoxide in human blood plasmaBiochem Biophys Res Commun165988993CrossRefPubMedGoogle Scholar
  56. Yamamoto, Y, Wakabayashi, K, Nagano, M 1992Comparison of plasma levels of lipid hydroperoxides and antioxidants in hyperlipidemic Nagase analbuminemic rats, Sprague–Dawley rats, and humansBiochem Biophys Res Commun189518523CrossRefPubMedGoogle Scholar
  57. Yura, T, Fukunaga, M, Khan, R, Nassar, GN, Badr, KF, Montero, A 1999Free-radical-generated F2-isoprostane stimulates cell proliferation and endothelin-1 expression on endothelial cellsKidney Int56471478CrossRefPubMedGoogle Scholar
  58. Zhang, HJ, Doctrow, SR, Xu, L, Oberley, LW, Beecher, B, Morrison, J, Overley, TD, Kregel, KC 2004Redox modulation of the liver with chronic antioxidant enzyme mimetic treatment prevents age-related oxidative damage associated with environmental stressFASEB J1815471549PubMedGoogle Scholar
  59. Zhou, XJ, Vaziri, ND, Zhang, J, Wang, HW, Wang, XQ 2002Association of renal injury with nitric oxide deficiency in aged SHR: prevention by hypertension control with AT1 blockadeKidney Int62914921CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Vitamin Research InstituteMoscowRussia

Personalised recommendations