Biogerontology

, Volume 6, Issue 4, pp 227–232

Bioinformatics and Proteomics Approaches for Aging Research

  • Chaerkady Raghothama
  • H. C. Harsha
  • C. K. Prasad
  • Akhilesh Pandey
Review Article

Abstract

Aging is a natural phenomenon that affects the entire physiology of an organism. Elucidating the molecular mechanisms underlying this complex process remains a major challenge today. Humans make poor models for research into aging because of their long life span. Thus, most of the current knowledge is through studies conducted in lower organisms. Large differences in life spans make it difficult to extrapolate the results of experiments carried out in model organisms to humans. Recent advances in genomic and proteomic technologies now permit generation of data pertaining to aging on a large-scale. In addition, several web-based community resources and databases are available that provide easy access to the available data. Use of bioinformatics and systems biology type of approaches provide a framework to start dissecting this complex biological phenomenon. Here, we discuss various genomic, transcriptomic and proteomic approaches that have the potential to provide a comprehensive mechanistic insight into the aging process.

Keywords

bioinformatics database genomics proteomics systems biology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner, M, Ball, CA, Blake, JA, Botstein, D, Butler, H, Cherry, JM, Davis, AP, Dolinski, K, Dwight, SS, Eppig, JT, Harris, MA, Hill, DP, Issel-Tarver, L, Kasarskis, A, Lewis, S, Matese, JC, Richardson, JE, Ringwald, M, Rubin, GM, Sherlock, G 2000Gene ontology: tool for the unification of biology. The Gene Ontology ConsortiumNat Genet252529PubMedGoogle Scholar
  2. Bank, RA, Bayliss, MT, Lafeber, FP, Maroudas, A, Tekoppele, JM 1998Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilageBiochem J330345351PubMedGoogle Scholar
  3. Bessenyei, B, Marka, M, Urban, L, Zeher, M, Semsei, I 2004Single nucleotide polymorphisms: aging and diseasesBiogerontology5291303CrossRefPubMedGoogle Scholar
  4. Breitkreutz, BJ, Stark, C, Tyers, M 2003The GRID: The General Repository for Interaction DatasetsGenome Biol4R23PubMedGoogle Scholar
  5. Chang, J, Remmen, H, Cornell, J, Richardson, A, Ward, WF 2003Comparative proteomics: characterization of a two-dimensional gel electrophoresis system to study the effect of aging on mitochondrial proteinsMech Ageing Dev1243341CrossRefPubMedGoogle Scholar
  6. Chen, W, Ji, J, Xu, X, He, S, Ru, B 2003Proteomic comparison between human young and old brains by two-dimensional gel electrophoresis and identification of proteinsInt J Dev Neurosci21209216PubMedGoogle Scholar
  7. Cho, YM, Bae, SH, Choi, BK, Cho, SY, Song, CW, Yoo, JK, Paik, YK 2003Differential expression of the liver proteome in senescence accelerated miceProteomics318831894PubMedGoogle Scholar
  8. Davenport, RJ, Strauss, E, LaMarco, K 2001A SAGE KE PrimerSci Aging Knowledge Environ2001vp1PubMedGoogle Scholar
  9. Magalhaes, JP, Toussaint, O 2004GenAge: a genomic and proteomic network map of human ageingFEBS Lett571243247PubMedGoogle Scholar
  10. Magalhaes, JP, Costa, J, Toussaint, O 2005HAGR: the Human Ageing Genomic ResourcesNucleic Acids Res33D537543PubMedGoogle Scholar
  11. Deshpande, KS, Harsha, HC, Pandey, A 2003Microarrays and mass spectrometry – the future of proteomicsCurr Genomics4605613Google Scholar
  12. Dieterich, C, Wang, H, Rateitschak, K, Luz, H, Vingron, M 2003CORG: a database for COmparative Regulatory GenomicsNucleic Acids Res315557CrossRefPubMedGoogle Scholar
  13. Doniger, SW, Salomonis, N, Dahlquist, KD, Vranizan, K, Lawlor, SC, Conklin, BR 2003MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray dataGenome Biol4R7CrossRefPubMedGoogle Scholar
  14. Ferrarini, L, Bertelli, L, Feala, J, McCulloch, AD, Paternostro, G 2004A more efficient search strategy for aging genes based on connectivityBioinformatics21338348PubMedGoogle Scholar
  15. Furuyama, T, Nakazawa, T, Nakano, I, Mori, N 2000Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologuesBiochem J349629634CrossRefPubMedGoogle Scholar
  16. Gershon, H, Gershon, D 2000The budding yeast, Saccharomyces cerevisiae, as a model for aging research: a critical reviewMech Ageing Dev120122CrossRefPubMedGoogle Scholar
  17. Gershon, H, Gershon, D 2002Caenorhabditis elegans – a paradigm for aging research: advantages and limitationsMech Ageing Dev123261274CrossRefPubMedGoogle Scholar
  18. Goto, M 1997Hierarchical deterioration of body systems in Werner’s syndrome: implications for normal ageingMech Ageing Dev98239254CrossRefPubMedGoogle Scholar
  19. Gygi, SP, Rist, B, Gerber, SA, Turecek, F, Gelb, MH, Aebersold, R 1999Quantitative analysis of complex protein mixtures using isotope-coded affinity tagsNat Biotechnol17994999CrossRefPubMedGoogle Scholar
  20. Hood, L 2003Systems biology: integrating technology, biology, and computationMech Ageing Dev124916CrossRefPubMedGoogle Scholar
  21. Kaeberlein, M, Jegalian, B, McVey, M 2002AGEID: a database of aging genes and interventionsMech Ageing Dev12311151119CrossRefPubMedGoogle Scholar
  22. Kimura, KD, Tissenbaum, HA, Liu, Y, Ruvkun, G 1997daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegansScience277942946CrossRefPubMedGoogle Scholar
  23. Konova, E, Baydanoff, S, Atanasova, M, Velkova, A 2004Age-related changes in the glycation of human aortic elastinExp Gerontol39249254CrossRefPubMedGoogle Scholar
  24. Kyng, KJ, May, A, Kolvraa, S, Bohr, VA 2003Gene expression profiling in Werner syndrome closely resembles that of normal agingProc Natl Acad Sci USA1001225912264CrossRefPubMedGoogle Scholar
  25. Lee, SS, Kennedy, S, Tolonen, AC, Ruvkun, G 2003aDAF-16 target genes that control C. elegans life-span and metabolismScience300644647Google Scholar
  26. Lee, SS, Lee, RY, Fraser, AG, Kamath, RS, Ahringer, J, Ruvkun, G 2003bA systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevityNat Genet334048Google Scholar
  27. Lin, K, Dorman, JB, Rodan, A, Kenyon, C 1997daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegansScience27813191322PubMedGoogle Scholar
  28. Ly, DH, Lockhart, DJ, Lerner, RA, Schultz, PG 2000Mitotic misregulation and human agingScience28724862492CrossRefPubMedGoogle Scholar
  29. McCarroll, SA, Murphy, CT, Zou, S, Pletcher, SD, Chin, CS, Jan, YN, Kenyon, C, Bargmann, CI, Li, H 2004Comparing genomic expression patterns across species identifies shared transcriptional profile in agingNat Genet36197204CrossRefPubMedGoogle Scholar
  30. Ong, SE, Blagoev, B, Kratchmarova, I, Kristensen, DB, Steen, H, Pandey, A, Mann, M 2002Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomicsMol Cell Proteomics1376386PubMedGoogle Scholar
  31. Ogg, S, Paradis, S, Gottlieb, S, Patterson, GI, Lee, L, Tissenbaum, HA, Ruvkun, G 1997The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegansNature389994999PubMedGoogle Scholar
  32. Paik, DC, Dillon, J, Galicia, E, Tilson, MD 2001The nitrite/collagen reaction: non-enzymatic nitration as a model system for age-related damageConnect Tissue Res42111122PubMedGoogle Scholar
  33. Pavlidis, P, Qin, J, Arango, V, Mann, JJ, Sibille, E 2004Using the gene ontology for microarray data mining: a comparison of methods and application to age effects in human prefrontal cortexNeurochem Res2912131222CrossRefPubMedGoogle Scholar
  34. Peri, S, Navarro, JD, Amanchy, R, Kristiansen, TZ, Jonnalagadda, CK, Surendranath, V, Niranjan, V, Muthusamy, B, Gandhi, TK, Gronborg, M, Ibarrola, N, Deshpande, N, Shanker, K, Shivashankar, HN, Rashmi, BP, Ramya, MA, Zhao, Z, Chandrika, KN, Padma, N, Harsha, HC, Yatish, AJ, Kavitha, MP, Menezes, M, Choudhury, DR, Suresh, S, Ghosh, N, Saravana, R, Chandran, S, Krishna, S, Joy, M, Anand, SK, Madavan, V, Joseph, A, Wong, GW, Schiemann, WP, Constantinescu, SN, Huang, L, Khosravi-Far, R, Steen, H, Tewari, M, Ghaffari, S, Blobe, GC, Dang, CV, Garcia, JG, Pevsner, J, Jensen, ON, Roepstorff, P, Deshpande, KS, Chinnaiyan, AM, Hamosh, A, Chakravarti, A, Pandey, A 2003Development of human protein reference database as an initial platform for approaching systems biology in humansGenome Res1323632371CrossRefPubMedGoogle Scholar
  35. Poon, HF, Castegna, A, Farr, SA, Thongboonkerd, V, Lynn, BC, Banks, WA, Morley, JE, Klein, JB, Butterfield, DA 2004Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence- accelerated-prone 8 mice brainNeuroscience126915926CrossRefPubMedGoogle Scholar
  36. Robinson, LJ, Karlsson, NG, Weiss, AS, Packer, NH 2003Proteomic analysis of the genetic premature aging disease Hutchinson Gilford progeria syndrome reveals differential protein expression and glycosylationJ Proteome Res2556557CrossRefPubMedGoogle Scholar
  37. Soreghan, BA, Yang, F, Thomas, SN, Hsu, J, Yang, AJ 2003High-throughput proteomic-based identification of oxidatively induced protein carbonylation in mouse brainPharm Res2017131720CrossRefPubMedGoogle Scholar
  38. Strauss, E, LaMarco, K 2002Science of aging knowledge environment: one-stop shopping for researchers in the field of agingExp Gerontol3712971301CrossRefPubMedGoogle Scholar
  39. Tollet-Egnell, P, Flores-Morales, A, Stahlberg, N, Malek, RL, Lee, N, Norstedt, G 2001Gene expression profile of the aging process in rat liver: normalizing effects of growth hormone replacementMol Endocrinol15308318CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Chaerkady Raghothama
    • 1
    • 2
  • H. C. Harsha
    • 1
  • C. K. Prasad
    • 1
  • Akhilesh Pandey
    • 3
  1. 1.Institute of BioinformaticsInternational Tech Park Ltd.BangaloreIndia
  2. 2.Department of BiotechnologyKasturba Medical CollegeManipalIndia
  3. 3.McKusick-Nathans Institute of Genetic Medicine and the Department of Biological ChemistryJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations