Biogerontology

, Volume 6, Issue 1, pp 71–75 | Cite as

Exercise and hormesis: oxidative stress-related adaptation for successful aging

Opinion

Abstract

The hormesis theory purports that biological systems respond with a bell-shaped curve to exposure to chemicals, toxins, and radiation. Here we extend the hormesis theory to include reactive oxygen species (ROS). We further suggest that the beneficial effects of regular exercise are partly based on the ROS generating capability of exercise, which is in the stimulation range of ROS production. Therefore, we suggest that exercise-induced ROS production plays a role in the induction of antioxidants, DNA repair and protein degrading enzymes, resulting in decreases in the incidence of oxidative stress-related diseases and retardation of the aging process.

Keywords

anti-oxidants DNA repair exercise hormesis oxygen reactive species (ROS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrade, FH, Reid, MB, Westerblad, H 2001Contractile response of skeletal muscle to low peroxide concentrations: myofibrillar calcium sensitivity as a likely target for redox-modulationFASEB J15309311PubMedGoogle Scholar
  2. Beedholm, R, Clark, , BF, , Rattan, SI 2004Mild heat stress stimulates 20S proteasome and its 11S activator in human fibroblasts undergoing aging in vitroCell Stress Chaperones94957PubMedGoogle Scholar
  3. CalabreseEJ Baldwin, LA 2003Ethanol and hormesisCrit Rev Toxicol33407424CrossRefGoogle Scholar
  4. Calabrese, EJ, Baldwin, LA 2003Toxicology rethinks its central beliefNature421691692PubMedCrossRefGoogle Scholar
  5. Cannon, JG, Meydani, SN, Fielding, RA, Fiatarone, MA, Meydani, M, Farhangmehr, M, OrencoleSF; Blumberg, JB, Evans, WJ 2001Acute phase response in exercise. II. Associations between vitamin E, cytokines, and muscle proteolysisAm J Physiol260R1235R1240Google Scholar
  6. Caratero, A, Courtade, M, Bonnet, L, Planel, H, Caratero, C 1998Effect of a continuous gamma irradiation at a very low dose on the life span of miceGerontology44272276PubMedCrossRefGoogle Scholar
  7. Davies, KJA, Quintanilha, AT, Brooks, GA, Packer, L 1982Free radicals and tissue damage produced by exerciseBiochem Biophys Res Commun10711981205PubMedCrossRefGoogle Scholar
  8. Evans, WJ, Cannon, JG 1991The metabolic effects of exercise-induced muscle damageExerc Sport Sci Rev1999125PubMedCrossRefGoogle Scholar
  9. Gilchrest, BA, Bohr, VA 1997Aging processes, DNA damage, and repairFASEB J11322330PubMedGoogle Scholar
  10. Goto, S, Takahashi, R, Kumiyama, A, Radak, Z, Hayashi, T, Takenouchi, M, Abe, R 2001Implications of protein degradation in agingAnn NY Acad Sci9285464PubMedCrossRefGoogle Scholar
  11. Greiwe., JS, Cheng., B, Rubin., DC, Yarasheski, KE, Semenkovich, CF 2001Resistance exercise decreases skeletal muscle tumor necrosis factor alpha in frail elderly humansFASEB J15475482PubMedCrossRefGoogle Scholar
  12. Hamilton, KL, Staib, JL, Phillips, T, Hess, A, Lennon, SL, Powers, SK 2003Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusionFree Radic Biol Med34800809PubMedCrossRefGoogle Scholar
  13. Harman, D 1956Aging: a theory based on free radical and radiation chemistryJ Gerontol11298300PubMedGoogle Scholar
  14. Hawkins, SA, Wiswell, RA, Marcell, TJ 2003Exercise and the master athlete–a model of successful aging?J Gerontol A Biol Sci Med Sci5810091011PubMedGoogle Scholar
  15. Kaiser, J 2003Hormesis. A healthful dab of radiation?Science378302302Google Scholar
  16. Le Bourg, E. 2003Delaying aging: could the study of hormesis be more helpful than that of the genetic pathway used to survive starvation?Biogerontology443194324CrossRefGoogle Scholar
  17. Lee, CK, Klopp, RG, Weindruch, R, Prolla, , TA,  1999Gene expression profile of aging and its retardation by caloric restrictionScience28513901393PubMedCrossRefGoogle Scholar
  18. Mattson, MP, Chan, SL, Duan, W 2002Modification of brain aging and neurodegenerative disorders by genes, diet, and behaviorPhysiol Rev82637672PubMedGoogle Scholar
  19. McArdle, A, Dillmann, WH, Mestril, R, Faulkner, JA, Jackson, MJ 2004Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunctionFASEB J18355357PubMedGoogle Scholar
  20. McArdle, A, Jackson, MJ 2000Exercise, oxidative stress and ageingJ Anat197539541PubMedCrossRefGoogle Scholar
  21. Minois, N. 2001Longevity and aging: beneficial effects of exposure to mild stressBiogerontology11529CrossRefGoogle Scholar
  22. Niwa, K, Hashimoto, M, Lian, Z, Gao, J, Tagami, K, Yokoyama, Y, Mori, H, Tamaya, T 2002Inhibitory effects of toremifene on N-methyl-N-nitrosourea and estradiol-17beta-induced endometrial carcinogenesis in miceJpn J Cancer Res93626635PubMedGoogle Scholar
  23. Pani, G, Colavitti, R, Bedogni, B, Anzevino, R, Borrello, S, Galeotti, T 2000A redox signaling mechanism for density-dependent inhibition of cell growthJ Biol Chem2753889138899PubMedCrossRefGoogle Scholar
  24. Radak, Z, Apor, P, Pucsok, J, Berkes, I, Ogonovszky, H, Pavlik, G, Nakamoto, H, Goto, S 2003Marathon running alters the DNA base excision repair in human skeletal muscleLife Sci7216271633PubMedCrossRefGoogle Scholar
  25. Radak, Z, Chung, HY, Naito, H, Takahashi, R, Jung, JK, Kim, JH, S. Goto, S 2004Age-associated increase in oxidative stress and nuclear factor κB activation is attenuated by regular exercise in rat liverFASEB J18749750PubMedGoogle Scholar
  26. Radak, Z, Kaneko, T, Tahara, S, Nakamoto, H, Ohno, H, Sasvari, M, Nyakas, C, Goto, S 1999The effect of exercise training on oxidative damage of lipids, proteins, and DNA in rat skeletal muscle: evidence for beneficial outcomesFree Radic Biol Med276974PubMedCrossRefGoogle Scholar
  27. Radak, Z, Kaneko, T, Tahara, S, Nakamoto, H, Pucsok, J, Sasvari, M, Nyakas, C, Goto, S 2001Regular exercise improves cognitive function and decreases oxidative damage in rat brainNeurochem Int381723PubMedCrossRefGoogle Scholar
  28. Radak, Z, Naito, H, Kaneko, T, Tahara, S, Nakamoto, H, Takahashi, R, Cardozo-Pelaez, F, Goto, S 2002Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal musclePflugers Arch445273278PubMedCrossRefGoogle Scholar
  29. Radak, Z, Pucsok, J, Mecseki, S, Csont, T, Ferdinandy, P 1999Muscle soreness-induced reduction in force generation is accompanied by increased nitric oxide content and DNA damage in human skeletal muscleFree Radic Biol Med2610591063PubMedCrossRefGoogle Scholar
  30. Rattan, SI 2001Applying hormesis in aging research and therapyHum Exp Toxicol20281285PubMedCrossRefGoogle Scholar
  31. Rattan, SI 2004The future of aging interventions: aging intervention, prevention, and therapy through hormesisJ Gerontol A Biol Sci Med Sci59B705709Google Scholar
  32. Rattan, SI, Gonzalez-Dosal, R, Rorge Nielsen, E, Kraft, DC, Weibel, J, Kahns, S 2004Slowing down aging from within: mechanistic aspects of anti-aging hormetic effects of mild heat stress on human cellsActa Biochim Pol51481492PubMedGoogle Scholar
  33. Reid, MB, Khawli, FA, Moody, MR 1993Reactive oxygen in skeletal muscle. III. Contractility of unfatigued muscleJ Appl Physiol7510811087PubMedGoogle Scholar
  34. Sagan, LA 1989On radiation, paradigms, and hormesisScience245574621PubMedCrossRefGoogle Scholar
  35. Sato, Y, Nanri, H, Ohta, M, Kasai, H, Ikeda, M 2003Increase of human MTH1 and decrease of 8-hydroxydeoxyguanosine in leukocyte DNA by acute and chronic exercise in healthy male subjectsBiochem Biophys Res Commun305333338PubMedCrossRefGoogle Scholar
  36. Sitte, N, Merker, K, Grune, T 1998Proteasome-dependent degradation of oxidized proteins in MRC-5 fibroblastsFEBS Lett440399402PubMedCrossRefGoogle Scholar
  37. SohalRS Weindruch, R 1996Oxidative stress, caloric restriction, and agingScience2735963CrossRefGoogle Scholar
  38. Stebbing, AR 1982Hormesis-the stimulation of growth by low levels of inhibitorsSci Total Environ22213234PubMedCrossRefGoogle Scholar
  39. Sun, JY, Tang, XL, Park, SW, Qiu, Z, Turrens, JF, Bolli, R 1996Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigsJ Clin Invest97562576PubMedCrossRefGoogle Scholar
  40. Verbeke, P, Clark, BF, Rattan, SI 2001Reduced levels of oxidized and glycoxidized proteins in human fibroblasts exposed to repeated mild heat shock during serial passaging in vitroFree Radic Biol Med3115931602PubMedCrossRefGoogle Scholar
  41. Verbeke, P, Deries, M, Clark, BF, Rattan, SI 2002Hormetic action of mild heat stress decreases the inducibility of protein oxidation and glycoxidation in human fibroblastsBiogerontology3117120PubMedCrossRefGoogle Scholar
  42. Wannamethee, SG, ShaperAG, , Walker, M 1998Changes in physical activity, mortality, and incidence of coronary heart disease in older menLancet35116031608PubMedCrossRefGoogle Scholar
  43. Wittwer, M, Billeter, R, Hoppeler, H, Fluck, M 2004Regulatory gene expression in skeletal muscle of highly endurance-trained humansActa Physiol Scand180217227PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Exercise Physiology Laboratory, School of Sport ScienceSemmelweis UniversityBudapestHungary
  2. 2.Department of PharmacologyPusan National UniversityKorea
  3. 3.Department of Biochemistry, Faculty of Pharmaceutical SciencesToho UniversityFunabashiJapan

Personalised recommendations