, Volume 6, Issue 1, pp 1–13 | Cite as

The stationary phase model of aging in yeast for the study of oxidative stress and age-related neurodegeneration

Review article


Understanding the biochemical and genetic alterations that occur during the aging of post-mitotic cells is critical for understanding the etiology of abnormalities observed during the aging of the central nervous system (CNS). While many theories for cellular aging exist, the free radical theory of aging has proved useful in explaining multiple aspects of post-mitotic cell aging, including the aging of neuronal cells. It is well established that Saccharomyces cerevisiae are an invaluable model system for exploring the regulation of aging in actively dividing cells, but increasing evidence suggests that the chronological lifespan or stationary phase model of aging in S. cerevisiae may also be useful for understanding the aging process in post-mitotic cells. Interestingly, the stationary phase model of aging in S. cerevisiae recapitulates many pathological alterations observed during neuronal aging, including evidence for increased oxidative stress and proteasome inhibition. Studies using proteins relevant to multiple neurodegenerative conditions (prion, alpha-synuclein, huntingtin) have demonstrated the utility of S. cerevisiae as a model system for understanding the genetic regulation of protein aggregation and cell death. Taken together, these data highlight the potential importance of using S. cerevisiae as a model system with which to explore the molecular basis for neuronal alterations observed in normal brain aging as well as multiple age–related diseases of the CNS.


aging brain neuron oxidative stress post-mitotic Saccharomyces cerevisiae stationary phase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, A, Gottschling, DE, Kaiser, CA, Stearns, T 1997Methods in Yeast Genetics: A Laboratory Course ManualCold Spring Harbor Laboratory PressCold Springs HarborGoogle Scholar
  2. Amici, M, Lupidi, G, Angeletti, M, Fioretti, E, Eleuteri, AM 2003Peroxynitrite- induced oxidation and its effects on isolated proteasomal systemsFree Radic Biol Med34987996PubMedGoogle Scholar
  3. Austriaco, NR,Jr 1996Review: to bud until death: the genetics of ageing in the yeast, SaccharomycesYeast12623630PubMedGoogle Scholar
  4. Barja, G 2002Rate of generation of oxidative stress-related damage and animal longevityFree Radic Biol Med3311671172PubMedGoogle Scholar
  5. Beckman, KB, Ames, BN 1998The free radical theory of aging maturesPhysiol Rev78547581PubMedGoogle Scholar
  6. Bitterman, KJ, Medvedik, O, Sinclair, DA 2003Longevity regulation in Saccharomyces cerevisiae: linking metabolism, genome stability, and heterchromatinMicrobiol Mol Biol Rev67376399PubMedGoogle Scholar
  7. Bohr, VA 2002Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cellsFree Radic Biol Med32804812PubMedGoogle Scholar
  8. Carrard, G, Dieu, M, Raes, M, Toussaint, O, Friguet, B 2003Impact of ageing on proteasome structure and function in human lymphocytesInt J Biochem Cell Biol35728739PubMedGoogle Scholar
  9. Chen, Q, Thorpe, J, Ding, Q, El-Amouri, IS, Keller, JN 2004Proteasome synthesis and assembly are required for survival during stationary phaseFree Radic Biol Med37859868PubMedGoogle Scholar
  10. Chen, SR, Dunigan, DD, Dickman, MB 2003Bcl-2 family members inhibit oxidative stress-induced programmed cell death in Saccharomyces cerevisiae Free Radic Biol Med3413151325PubMedGoogle Scholar
  11. Coux, O 2002The 26S proteasomeProg Mol Subcell Biol2985107PubMedGoogle Scholar
  12. Davies, KJ 1995Oxidative stress:the paradox of aerobic lifeBiochem Soc Symp61131PubMedGoogle Scholar
  13. Davies, KJ 2001Degradation of oxidized proteins by the 20S proteasomeBiochimie83301310PubMedGoogle Scholar
  14. DeMartino, GN, Slaughter, CA 1999The proteasome, a novel protease regulated by multiple mechanismsJ Biol Chem2742212322126PubMedGoogle Scholar
  15. Ding, Q, Keller, JN 2001Proteasomes and proteasome inhibition in the central nervous systemFree Radic Biol Med31574584PubMedGoogle Scholar
  16. Ding, Q, Reinacker, K, Dimayuga, E, Nukala, V, Drake, J, Butterfield, DA, Dunn, JC, Martin, S, Bruce-Keller, AJ, Keller, JN 2003Role of the proteasome in protein oxidation and neural viability following low-level oxidative stressFEBS Lett546228232PubMedGoogle Scholar
  17. Esterbauer, H, Schaur, RJ, Zollner, H 1991Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydesFree Radic Biol Med1181128PubMedGoogle Scholar
  18. Fabrizio, P, Pozza, F, Pletcher, SD, Gendron, CM, Longo, VD 2001Regulation of longevity and stress resistance by Sch9 in yeastScience292288290PubMedGoogle Scholar
  19. Fabrizio, P, Liou, LL, Moy, VN, Diaspro, A, SelverstoneValentine, J, Gralla, EB, Longo, VD 2003SOD2 functions downstream of Sch9 to extend longevity in yeastGenetics1633546PubMedGoogle Scholar
  20. Friguet, B, Szweda, LI 1997Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked proteinFEBS Lett4052125PubMedGoogle Scholar
  21. Gershon, H, Gershon, D 2000The budding yeast, Saccharomyces cerevisiae, as a model for aging research:a critical reviewMech Ageing Dev120122PubMedGoogle Scholar
  22. Glickman, MH, Rubin, DM, Fried, VA, Finley, D 1998The regulatory particle of the Saccharomyces cerevisiae proteasomeMol Cell Biol1831493162PubMedGoogle Scholar
  23. Golden TR and Hinerfeld DA (2002) Melov S. Oxidative stress and aging:beyond correlation. Aging Cell 1:117–123Google Scholar
  24. Goldberg AL, Akopian TN, Kisselev AF and Lee DH (1997) Rohrwild M. New insights into the mechanisms and importance of the proteasome in intracellular protein degradation. Biol Chem 378:131–140Google Scholar
  25. Grune, T, Davies, KJ 1997Breakdown of oxidized proteins as a part of secondary antioxidant defenses in mammalian cellsBiofactors6165172PubMedGoogle Scholar
  26. Grune, T, Shringarpure, R, Sitte, N, Davies, K 2001Age-related changes in protein oxidation and proteolysis in mammalian cellsJ Gerontol A Biol Sci Med Sci56B459B467PubMedGoogle Scholar
  27. Halliwell, B, Dizadaroglu, M 1992The measurement of oxidative damage to DNA by HPLC and GC/MS techniquesFree Radic Res Comm167587Google Scholar
  28. Hanawalt, PC, Gee, P, Ho, L, Hsu, K, Kane, CJ 1992Genomic heterogeneity of DNA repair. Role in aging?Ann NY Acad Sci6631725PubMedGoogle Scholar
  29. Hanawalt, PC 1995DNA repair comes of ageMuta Res336101113Google Scholar
  30. Harman, D 2001Aging:overviewAnn N Y Acad Sci928121PubMedCrossRefGoogle Scholar
  31. Jazwinski, SM, Chen, JB, Sun, J 1993A single gene change can extend yeast life span:the role of Ras in cellular senescenceAdv Exp Med Biol3304553PubMedGoogle Scholar
  32. Keller, JN, Gee, J, Ding, Q 2002The proteasome in brain agingAgeing Res Rev1279293PubMedGoogle Scholar
  33. Kowaltowski, AJ, Vercesi, AE, Fiskum, G 2000Bcl-2 prevents mitochondrial permeability transition and cytochrome c release via maintenance of reduced pyridine nucleotidesCell Death Differ7903910PubMedGoogle Scholar
  34. Longo, VD, Gralla, EB, Valentine, JS 1996Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivoJ Biol Chem2711227512280PubMedGoogle Scholar
  35. Longo, VD, Ellerby, LM, Bredesen, DE, Valentine, JS, Gralla, EB 1997Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeastJ Cell Biol13715811588PubMedGoogle Scholar
  36. Longo, VD 1999Mutations in signal transduction proteins increase stress resistance and longevity in yeast, nematodes, fruit flies, and mammalian neuronal cellsNeurobiol Aging20479486PubMedGoogle Scholar
  37. Longo, VD, Fabrizio, P 2002Regulation of longevity and stress resistance:a molecular strategy conserved from yeast to humans?Cell Mol Life Sci59903908PubMedGoogle Scholar
  38. MacLean, M, Harris, N, Piper, PW 2001Chronological lifespan of stationary phase yeast cells; a model for investigating the factors that might influence the ageing of postmitotic tissues in higher organismsYeast18499509PubMedGoogle Scholar
  39. Maclean, MJ, Aamodt, R, Harris, N, Alseth, I, Seeberg, E, Bjoras, M, Piper, PW 2003Base excision repair activities required for yeast to attain a full chronological life spanAging Cell293104PubMedGoogle Scholar
  40. Merad-Saidoune, M, Boitier, E, Nicole, A, Marsac, C, Martinou, JC, Sola, B, Sinet, PM 1999Overproduction of Cu/Zn-superoxide dismutase or Bcl-2 prevents the brain mitochondrial respiratory dysfunction induced by glutathione depletionExp Neuro158428436Google Scholar
  41. Monney, L, Otter, I, Olivier, R, Ozer, HL, Haas, AL, Omura, S, Borner, C 1998Defects in the ubiquitin pathway induce caspase-independent apoptosis blocked by Bcl-2J Biol Chem27361216131PubMedGoogle Scholar
  42. Okada, K, Wangpoengtrakul, C, Osawa, T, Toyokuni, S, Tanaka, K, Uchida, K 19994-Hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress. Identification of proteasomes as target moleculesJ Biol Chem2742378723793PubMedGoogle Scholar
  43. Outeiro, TF, Lindquist, S 2003Yeast cells provide insight into alpha-synuclein biology and pathobiologyScience30217721775PubMedGoogle Scholar
  44. Pichova, A, Vondrakova, D, Breitenbach, M 1997Mutants in the Saccharomyces cerevisiae RAS2 gene influence life span, cytoskeleton, and regulation of mitosisCan J Microbiol43774781CrossRefPubMedGoogle Scholar
  45. Reed, J 1998Bcl-2 family proteinsOncogene1732253236PubMedGoogle Scholar
  46. Rochet, JC, Outeiro, TF, Conway, KA, Ding, TT, Volles, MJ, Lashuel, HA, Bieganski, RM, Lindquist, SL, Lansbury, PT␣ 2004Interactions among alpha-synuclein, dopamine, and biomembranes:some clues for understanding neurodegeneration in Parkinson’s diseaseJ Mol Neurosci232334PubMedGoogle Scholar
  47. Shama, S, Kirchman, PA, Jiang, JC, Jazwinski, SM 1998Role of RAS2 in recovery from chronic stress:effect on yeast life spanExp Cell Res245368378PubMedGoogle Scholar
  48. Sinclair, D, Mills, K, Guarente, L 1998Aging in Saccharomyces cerevisiae Annu Rev Microbiol52533560PubMedGoogle Scholar
  49. Sohal, RS 2002Role of oxidative stress and protein oxidation in the aging processFree Radic Biol Med333744PubMedGoogle Scholar
  50. Tanaka, K 1998Proteasomes:structure and biologyJ Biochem (Tokyo)123195204Google Scholar
  51. Ullrich, O, Reinheckel, T, Sitte, N, Hass, R, Grune, T, Davies, KJ 1999Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histonesProc Natl Acad Sci USA9662236228PubMedGoogle Scholar
  52. Ullrich, O, Grune, T 2001Proteasomal degradation of oxidatively damaged endogenous histones in K562 human leukemic cellsFree Radic Biol Med31887893PubMedGoogle Scholar
  53. Uchida, K 20034-Hydroxy-2-nonenal:a product and mediator of oxidative stressProg Lipid Res42318343PubMedGoogle Scholar
  54. Wang, HG, Reed, JC 1998Mechanisms of Bcl-2 protein functionHistol Histopathol13521530PubMedGoogle Scholar
  55. Willingham, S, Outeiro, TF, DeVit, MJ, Lindquist, SL, Muchowski, PJ 2003Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synucleinScience30217691772PubMedGoogle Scholar
  56. Zwickl P (2002) The 20S proteasome Curr Top Microbiol Immunol 268:23–41Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Quinghua Chen
    • 1
  • Qunxing Ding
    • 2
  • Jeffrey N. Keller
    • 1
    • 2
  1. 1.Sanders-Brown Center on AgingUniversity of KentuckyLexingtonUSA
  2. 2.Department of Anatomy and NeurobiologyUniversity of KentuckyLexingtonUSA

Personalised recommendations