Calculating Power to Detect Maternal and Offspring Genetic Effects in Genetic Association Studies

  • Gunn-Helen MoenEmail author
  • Gibran Hemani
  • Nicole M. Warrington
  • David M. Evans
Original Research


Offspring outcomes are a function of maternal genetics operating on the intrauterine and postnatal environment, offspring genetics and environmental factors. Partitioning genetic effects into maternal and offspring components requires genotyped mother–offspring pairs or genotyped individuals with phenotypic information on themselves and their offspring. We performed asymptotic power calculations and data simulations to estimate power to detect maternal and offspring genetic effects under a range of different study designs and models. We also developed the “Maternal and offspring Genetic effects Power Calculator” (M-GPC), an online utility which allows users to estimate the power to detect maternal and offspring genetic effects in their own studies. We find that approximately 50,000 genotyped mother–offspring pairs will be required to detect realistically sized maternal or offspring genetic effects (> 0.1% variance explained) with appreciable power (power > 90%, α = 5 × 10−8, two degree of freedom test), whereas greater than 10,000 pairs will be required to determine whether known genetic loci have maternal and/or offspring genetic effects (power > 78%, α = 0.05). The structural equation modelling framework espoused in this manuscript provides a natural method of combining different data structures including those present in large scale biobanks in order to maximize power to detect maternal and offspring genetic effects. We conclude that the sample sizes required to detect maternal or offspring genetic effects that explain realistic proportions of the trait variance with appreciable power are achievable and within the range of current research consortia.


Genetic association GWAS Maternal effects Offspring effects Fetal effects Power 


Author contributions

GHM, NMW and DME designed the research; GHM conducted the research and analysed data; GH assisted with implementation of the R shiny app. GHM and DME wrote the paper. All authors read and approved the final manuscript.


This article did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector. GHM has a PhD grant from the South-Eastern Norway Regional Health Authority (Grant Number 2015008). NMW is supported by a National Health and Medical Research Council Early Career Fellowship (Grant Number APP1104818). DME is supported by an NHMRC Senior Research Fellowship (1137714).

Compliance with ethical standards

Conflict of interest

Gunn-Helen Moen, Gibran Hemani, Nicole M. Warrington, David M. Evans declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10519_2018_9944_MOESM1_ESM.xlsx (87 kb)
Supplementary material 1 (XLSX 86 KB)


  1. Bates TC, Maher BS, Medland SE, McAloney K, Wright MJ, Hansell NK, Kendler KS, Martin NG, Gillespie NA (2018) The nature of nurture: using a virtual-parent design to test parenting effects on children’s educational attainment in genotyped families. Twin Res Hum Genet 21(2):73–83CrossRefGoogle Scholar
  2. Beaumont RN, Warrington NM, Cavadino A, Tyrrell J, Nodzenski M, Horikoshi M, Geller F, Myhre R, Richmond RC, Paternoster L, Bradfield JP, Kreiner-Moller E, Huikari V, Metrustry S, Lunetta KL, Painter JN, Hottenga JJ, Allard C, Barton SJ, Espinosa A, Marsh JA, Potter C, Zhang G, Ang W, Berry DJ, Bouchard L, Das S, Hakonarson H, Heikkinen J, Helgeland O, Hocher B, Hofman A, Inskip HM, Jones SE, Kogevinas M, Lind PA, Marullo L, Medland SE, Murray A, Murray JC, Njolstad PR, Nohr EA, Reichetzeder C, Ring SM, Ruth KS, Santa-Marina L, Scholtens DM, Sebert S, Sengpiel V, Tuke MA, Vaudel M, Weedon MN, Willemsen G, Wood AR, Yaghootkar H, Muglia LJ, Bartels M, Relton CL, Pennell CE, Chatzi L, Estivill X, Holloway JW, Boomsma DI, Montgomery GW, Murabito JM, Spector TD, Power C, Jarvelin MR, Bisgaard H, Grant SFA, Sorensen TIA, Jaddoe VW, Jacobsson B, Melbye M, McCarthy MI, Hattersley AT, Hayes MG, Frayling TM, Hivert MF, Felix JF, Hypponen E, Lowe WL Jr, Evans DM, Lawlor DA, Feenstra B, Freathy RM (2018) Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Hum Mol Genet 27(4):742–756CrossRefGoogle Scholar
  3. Boker S, Neale M, Maes H, Wilde M, Spiegel M, Brick T, Spies J, Estabrook R, Kenny S, Bates T, Mehta P, Fox J (2011) OpenMx: an open source extended structural equation modeling framework. Psychometrika 76(2):306–317CrossRefGoogle Scholar
  4. Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, Molloy L, Ness A, Ring S, Davey Smith G (2013) Cohort Profile: the ‘children of the 90s’--the index offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol 42(1):111–127CrossRefGoogle Scholar
  5. Eaves LJ, Pourcain BS, Smith GD, York TP, Evans DM (2014) Resolving the effects of maternal and offspring genotype on dyadic outcomes in genome wide complex trait analysis (“M-GCTA”). Behav Genet 44(5):445–455CrossRefGoogle Scholar
  6. Evans DM, Moen G-H, Hwang D, Lawlor DA, Warrington NM (submitted) Elucidating the role of maternal environmental exposures on offspring health and disease using two-sample mendelian randomization. Int J EpidemiolGoogle Scholar
  7. Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, Henderson J, Macleod J, Molloy L, Ness A, Ring S, Nelson SM, Lawlor DA (2013) Cohort profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol 42(1):97–110CrossRefGoogle Scholar
  8. Hattersley AT, Tooke JE (1999) The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet 353(9166):1789–1792CrossRefGoogle Scholar
  9. Hattersley AT, Beards F, Ballantyne E, Appleton M, Harvey R, Ellard S (1998) Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet 19(3):268–270CrossRefGoogle Scholar
  10. Horikoshi M, Beaumont RN, Day FR, Warrington NM, Kooijman MN, Fernandez-Tajes J, Feenstra B, van Zuydam NR, Gaulton KJ, Grarup N, Bradfield JP, Strachan DP, Li-Gao R, Ahluwalia TS, Kreiner E, Rueedi R, Lyytikainen LP, Cousminer DL, Wu Y, Thiering E, Wang CA, Have CT, Hottenga JJ, Vilor-Tejedor N, Joshi PK, Boh ETH, Ntalla I, Pitkanen N, Mahajan A, van Leeuwen EM, Joro R, Lagou V, Nodzenski M, Diver LA, Zondervan KT, Bustamante M, Marques-Vidal P, Mercader JM, Bennett AJ, Rahmioglu N, Nyholt DR, Ma RCW, Tam CHT, Tam WH, Ganesh SK, van Rooij FJ, Jones SE, Loh PR, Ruth KS, Tuke MA, Tyrrell J, Wood AR, Yaghootkar H, Scholtens DM, Paternoster L, Prokopenko I, Kovacs P, Atalay M, Willems SM, Panoutsopoulou K, Wang X, Carstensen L, Geller F, Schraut KE, Murcia M, van Beijsterveldt CE, Willemsen G, Appel EVR, Fonvig CE, Trier C, Tiesler CM, Standl M, Kutalik Z, Bonas-Guarch S, Hougaard DM, Sanchez F, Torrents D, Waage J, Hollegaard MV, de Haan HG, Rosendaal FR, Medina-Gomez C, Ring SM, Hemani G, McMahon G, Robertson NR, Groves CJ, Langenberg C, Luan J, Scott RA, Zhao JH, Mentch FD, MacKenzie SM, Reynolds RM, Lowe WL Jr., Tonjes A, Stumvoll M, Lindi V, Lakka TA, van Duijn CM, Kiess W, Korner A, Sorensen TI, Niinikoski H, Pahkala K, Raitakari OT, Zeggini E, Dedoussis GV, Teo YY, Saw SM, Melbye M, Campbell H, Wilson JF, Vrijheid M, de Geus EJ, Boomsma DI, Kadarmideen HN, Holm JC, Hansen T, Sebert S, Hattersley AT, Beilin LJ, Newnham JP, Pennell CE, Heinrich J, Adair LS, Borja JB, Mohlke KL, Eriksson JG, Widen EE, Kahonen M, Viikari JS, Lehtimaki T, Vollenweider P, Bonnelykke K, Bisgaard H, Mook-Kanamori DO, Hofman A, Rivadeneira F, Uitterlinden AG, Pisinger C, Pedersen O, Power C, Hypponen E, Wareham NJ, Hakonarson H, Davies E, Walker BR, Jaddoe VW, Jarvelin MR, Grant SF, Vaag AA, Lawlor DA, Frayling TM, Davey Smith G, Morris AP, Ong KK, Felix JF, Timpson NJ, Perry JR, Evans DM, McCarthy MI, Freathy RM (2016) Genome-wide associations for birth weight and correlations with adult disease. Nature 538(7624):248–252CrossRefGoogle Scholar
  11. Hunter MD (2018) State space modeling in an open source, modular, structural equation modeling environment. Struct Equ Model: A Multidiscip J 25(2):307–324CrossRefGoogle Scholar
  12. Kong A, Thorleifsson G, Frigge ML, Vilhjalmsson BJ, Young AI, Thorgeirsson TE, Benonisdottir S, Oddsson A, Halldorsson BV, Masson G, Gudbjartsson DF, Helgason A, Bjornsdottir G, Thorsteinsdottir U, Stefansson K (2018) The nature of nurture: effects of parental genotypes. Science 359(6374):424–428CrossRefGoogle Scholar
  13. Lunde A, Melve KK, Gjessing HK, Skjaerven R, Irgens LM (2007) Genetic and environmental influences on birth weight, birth length, head circumference, and gestational age by use of population-based parent-offspring data. Am J Epidemiol 165(7):734–741CrossRefGoogle Scholar
  14. Magnus P (1984a) Causes of variation in birth weight: a study of offspring of twins. Clin Genet 25(1):15–24CrossRefGoogle Scholar
  15. Magnus P (1984b) Further evidence for a significant effect of fetal genes on variation in birth weight. Clin Genet 26(4):289–296CrossRefGoogle Scholar
  16. Magnus P, Birke C, Vejrup K, Haugan A, Alsaker E, Daltveit AK, Handal M, Haugen M, Hoiseth G, Knudsen GP, Paltiel L, Schreuder P, Tambs K, Vold L, Stoltenberg C (2016) Cohort profile update: The Norwegian Mother and Child Cohort Study (MoBa). Int J Epidemiol 45(2):382–388CrossRefGoogle Scholar
  17. Mather K, Jinks JL (1982) Biometrical Genetics: The study of continuous variation, 3rd edn. Chapman-Hall, LondonCrossRefGoogle Scholar
  18. Middeldorp CM, Felix JF, Mahajan A, EAGLE consortium, EGG consortium, McCarthy MI (submitted) Cohort profile: The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) Consortia. Eur J EpidemiolGoogle Scholar
  19. Neale MC, Cardon LR (1992) Methodology for genetic studies of twins and families. Kluwer Academic Publishers, DoordrechtCrossRefGoogle Scholar
  20. Neale MC, Hunter MD, Pritikin JN, Zahery M, Brick TR, Kirkpatrick RM, Estabrook R, Bates TC, Maes HH, Boker SM (2016) OpenMx 2.0: extended structural equation and statistical modeling. Psychometrika 81(2):535–549CrossRefGoogle Scholar
  21. Pritikin JN, Hunter MD, Boker SM (2015) Modular Open-Source Software for Item Factor Analysis. Educ Psychol Measur 75(3):458–474CrossRefGoogle Scholar
  22. RStudioTeam (2015) RStudio: integrated development for R. RStudio, Inc., BostonGoogle Scholar
  23. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, Liu B, Matthews P, Ong G, Pell J, Silman A, Young A, Sprosen T, Peakman T, Collins R (2015) UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLOS Med 12(3):e1001779CrossRefGoogle Scholar
  24. Taal HR, Pourcain BS, Thiering E, Das S, Mook-Kanamori DO, Warrington NM, Kaakinen M, Kreiner-Moller E, Bradfield JP, Freathy RM, Geller F, Guxens M, Cousminer DL, Kerkhof M, Timpson NJ, Ikram MA, Beilin LJ, Bonnelykke K, Buxton JL, Charoen P, Chawes BLK, Eriksson J, Evans DM, Hofman A, Kemp JP, Kim CE, Klopp N, Lahti J, Lye SJ, McMahon G, Mentch FD, Muller M, O’Reilly PF, Prokopenko I, Rivadeneira F, Steegers EAP, Sunyer J, Tiesler C, Yaghootkar H, Breteler MMB, Debette S, Fornage M, Gudnason V, Launer LJ, van der Lugt A, Mosley TH, Seshadri S, Smith AV, Vernooij MW, Blakemore AI, Chiavacci RM, Feenstra B, Fernandez-Benet J, Grant SFA, Hartikainen AL, van der Heijden AJ, Iniguez C, Lathrop M, McArdle WL, Molgaard A, Newnham JP, Palmer LJ, Palotie A, Pouta A, Ring SM, Sovio U, Standl M, Uitterlinden AG, Wichmann HE, Vissing NH, DeCarli C, van Duijn CM, McCarthy MI, Koppelman GH, Estivill X, Hattersley AT, Melbye M, Bisgaard H, Pennell CE, Widen E, Hakonarson H, Smith GD, Heinrich J, Jarvelin MR, Jaddoe VWV (2012) Common variants at 12q15 and 12q24 are associated with infant head circumference. Nat Genet 44(5):532–538CrossRefGoogle Scholar
  25. van der Valk RJ, Kreiner-Moller E, Kooijman MN, Guxens M, Stergiakouli E, Saaf A, Bradfield JP, Geller F, Hayes MG, Cousminer DL, Korner A, Thiering E, Curtin JA, Myhre R, Huikari V, Joro R, Kerkhof M, Warrington NM, Pitkanen N, Ntalla I, Horikoshi M, Veijola R, Freathy RM, Teo YY, Barton SJ, Evans DM, Kemp JP, St Pourcain B, Ring SM, Davey Smith G, Bergstrom A, Kull I, Hakonarson H, Mentch FD, Bisgaard H, Chawes B, Stokholm J, Waage J, Eriksen P, Sevelsted A, Melbye M, van Duijn CM, Medina-Gomez C, Hofman A, de Jongste JC, Taal HR, Uitterlinden AG, Armstrong LL, Eriksson J, Palotie A, Bustamante M, Estivill X, Gonzalez JR, Llop S, Kiess W, Mahajan A, Flexeder C, Tiesler CM, Murray CS, Simpson A, Magnus P, Sengpiel V, Hartikainen AL, Keinanen-Kiukaanniemi S, Lewin A, Da SC Alves, Blakemore A, Buxton AI, Kaakinen JL, Rodriguez M, Sebert A, Vaarasmaki S, Lakka M, Lindi T, Gehring V, Postma U, Ang DS, Newnham W, Lyytikainen JP, Pahkala LP, Raitakari K, Panoutsopoulou OT, Zeggini K, Boomsma E, Groen-Blokhuis DI, Ilonen M, Franke J, Hirschhorn L, Pers JN, Liang TH, Huang L, Hocher J, Knip B, Saw M, Holloway SM, Melen JW, Grant E, Feenstra SF, Lowe B, Widen WL, Sergeyev E, Grallert E, Custovic H, Jacobsson A, Jarvelin B, Atalay MR, Koppelman M, Pennell GH, Niinikoski CE, Dedoussis H, McCarthy GV, Frayling MI, Sunyer TM, Timpson J, Rivadeneira NJ, Bonnelykke F, Jaddoe K VW (2015) A novel common variant in DCST2 is associated with length in early life and height in adulthood. Hum Mol Genet 24(4):1155–1168CrossRefGoogle Scholar
  26. Warrington NM, Freathy RM, Neale MC, Evans DM (2018) Using structural equation modelling to jointly estimate maternal and fetal effects on birthweight in the UK Biobank. Int J Epidemiol 47(4):1229–1241CrossRefGoogle Scholar
  27. Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, Freathy RM, Perry JR, Stevens S, Hall AS, Samani NJ, Shields B, Prokopenko I, Farrall M, Dominiczak A, Johnson T, Bergmann S, Beckmann JS, Vollenweider P, Waterworth DM, Mooser V, Palmer CN, Morris AD, Ouwehand WH, Zhao JH, Li S, Loos RJ, Barroso I, Deloukas P, Sandhu MS, Wheeler E, Soranzo N, Inouye M, Wareham NJ, Caulfield M, Munroe PB, Hattersley AT, McCarthy MI, Frayling TM (2008) Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet 40(5):575–583CrossRefGoogle Scholar
  28. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, Berndt SI, Elliott AL, Jackson AU, Lamina C, Lettre G, Lim N, Lyon HN, McCarroll SA, Papadakis K, Qi L, Randall JC, Roccasecca RM, Sanna S, Scheet P, Weedon MN, Wheeler E, Zhao JH, Jacobs LC, Prokopenko I, Soranzo N, Tanaka T, Timpson NJ, Almgren P, Bennett A, Bergman RN, Bingham SA, Bonnycastle LL, Brown M, Burtt NP, Chines P, Coin L, Collins FS, Connell JM, Cooper C, Smith GD, Dennison EM, Deodhar P, Elliott P, Erdos MR, Estrada K, Evans DM, Gianniny L, Gieger C, Gillson CJ, Guiducci C, Hackett R, Hadley D, Hall AS, Havulinna AS, Hebebrand J, Hofman A, Isomaa B, Jacobs KB, Johnson T, Jousilahti P, Jovanovic Z, Khaw KT, Kraft P, Kuokkanen M, Kuusisto J, Laitinen J, Lakatta EG, Luan J, Luben RN, Mangino M, McArdle WL, Meitinger T, Mulas A, Munroe PB, Narisu N, Ness AR, Northstone K, O’Rahilly S, Purmann C, Rees MG, Ridderstrale M, Ring SM, Rivadeneira F, Ruokonen A, Sandhu MS, Saramies J, Scott LJ, Scuteri A, Silander K, Sims MA, Song K, Stephens J, Stevens S, Stringham HM, Tung YC, Valle TT, Van Duijn CM, Vimaleswaran KS, Vollenweider P, Waeber G, Wallace C, Watanabe RM, Waterworth DM, Watkins N, Witteman JC, Zeggini E, Zhai G, Zillikens MC, Altshuler D, Caulfield MJ, Chanock SJ, Farooqi IS, Ferrucci L, Guralnik JM, Hattersley AT, Hu FB, Jarvelin MR, Laakso M, Mooser V, Ong KK, Ouwehand WH, Salomaa V, Samani NJ, Spector TD, Tuomi T, Tuomilehto J, Uda M, Uitterlinden AG, Wareham NJ, Deloukas P, Frayling TM, Groop LC, Hayes RB, Hunter DJ, Mohlke KL, Peltonen L, Schlessinger D, Strachan DP, Wichmann HE, McCarthy MI, Boehnke M, Barroso I, Abecasis GR, Hirschhorn JN (2009) Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 41(1):25–34CrossRefGoogle Scholar
  29. Wolf JB, Wade MJ (2009) What are maternal effects (and what are they not)? Philos Trans R Soc London 364(1520):1107–1115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Endocrinology, Morbid Obesity and Preventive MedicineOslo University HospitalOsloNorway
  2. 2.Faculty of Medicine, Institute of Clinical MedicineUniversity of OsloOsloNorway
  3. 3.Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUK
  4. 4.Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
  5. 5.Translational Research InstituteUniversity of Queensland Diamantina InstituteBrisbaneAustralia

Personalised recommendations