Advertisement

Behavior Genetics

, Volume 47, Issue 1, pp 25–35 | Cite as

The Role of Genes and Environment in Degree of Partner Self-Similarity

  • James M. SherlockEmail author
  • Karin J. H. Verweij
  • Sean C. Murphy
  • Andrew C. Heath
  • Nicholas G. Martin
  • Brendan P. ZietschEmail author
Original Research

Abstract

Choice of romantic partner is an enormously important component of human life, impacting almost every facet of day-to-day existence, however; the processes underlying this choice are remarkably complex and have so far been largely resistant to scientific explanation. One consistent finding is that, on average, members of romantic dyads tend to be more alike than would be expected by chance. Selecting for self-similarity is at least partially driven by phenotypic matching wherein couples share similar phenotypes, and preferences for a number of these traits are partly genetically influenced (e.g., education, height, social attitudes and religiosity). This suggests that genetically influenced preferences for self-similarity might contribute to phenotypic matching (and thus assortative mating), but it has never been studied in actual couples. In the present study, we use a large sample of twins to model sources of variation in self-similarity between partners. Biometrical modelling revealed that very little of the variation in the tendency to assortatively mate across 14 traits was due to genetic effects (7 %) or the shared environment of twins (0 %).

Keywords

Assortative mating Quantitative genetics Mate choice Self-similarity Romantic preference 

Notes

Acknowledgments

This study was funded by joint grants from the National Institutes of Health (Grant Numbers: AA07535, AA07728, AA10249, AA11998, MH31392) and the National Health and Medical Research Council (Australia, Grant Numbers: 941177 and 971232). James M. Sherlock is supported by an Australian Postgraduate Award. We also wish to thank Drew Bailey for integral input in developing a measure of the heritability of assortative mating.

Compliance with Ethical Standards

Conflict of Interest

James M. Sherlock, Karin J. H. Verweij, Sean C. Murphy, Andrew C. Heath, Nicholas G. Martin, Brendan P. Zietsch declare no conflict of interests.

Ethical Approval

All research was conducted in accordance with the guidelines of the Queensland Institute of Medical Research Ethics Committee with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

10519_2016_9808_MOESM1_ESM.pdf (2.7 mb)
Supplementary material 1 (PDF 2761 kb)
10519_2016_9808_MOESM2_ESM.pdf (60 kb)
Supplementary material 2 (PDF 60 kb)
10519_2016_9808_MOESM3_ESM.pdf (67 kb)
Supplementary material 3 (PDF 66 kb)
10519_2016_9808_MOESM4_ESM.pdf (72 kb)
Supplementary material 4 (PDF 71 kb)
10519_2016_9808_MOESM5_ESM.pdf (69 kb)
Supplementary material 5 (PDF 69 kb)

References

  1. Agrawal A, Heath A, Grant J, Pergadia M, Statham D, Bucholz K, Madden P (2006) Assortative mating for cigarette smoking and for alcohol consumption in female Australian twins and their spouses. Behav Genet 36(4):553–566. doi: 10.1007/s10519-006-9081-8 CrossRefPubMedGoogle Scholar
  2. Boker SM, Neale MC, Maes HH, Wilde MJ, Spiegel M, Brick TR, Fox J (2011) OpenMx: an open source extended structural equation modelling framework: PsychometrikaGoogle Scholar
  3. Boomsma DI, Neale MC, Dolan CV (1999) A note on the power provided by sibships of sizes 2, 3, and 4 in genetic covariance odeling of a codominant QTL. Behav Genet 29(3):163–170CrossRefPubMedGoogle Scholar
  4. Boomsma DI, Saviouk V, Hottenga J-J, Distel MA, de Moor MHM, Vink JM, Willemsen G (2010) Genetic epidemiology of attention deficit hyperactivity disorder (ADHD Index) in adults (epidemiology of ADHD index). PLoS ONE 5(5):e10621. doi: 10.1371/journal.pone.0010621 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bulmer MG (1971) The effect of selection on genetic variability. Am Nat 105(943):201–211. doi: 10.1086/282718 CrossRefGoogle Scholar
  6. Buunk AP, Park JH, Dubbs SL (2008) Parent-offspring conflict in mate preferences. Rev Gen Psychol 12(1):47–62. doi: 10.1037/1089-2680.12.1.47 CrossRefGoogle Scholar
  7. Caspi A, Herbener ES, Ozer DJ (1992) Shared experiences and the similarity of personalities: a longitudinal study of married couples. J Pers Soc Psychol 62(2):281–291. doi: 10.1037/0022-3514.62.2.281 CrossRefPubMedGoogle Scholar
  8. Cloninger CR, Przybeck TR, Svrakic DM (1991) The tridimensional personality questionnaire: U.S. normative data. Psychol Rep 69(3):1047–1057CrossRefPubMedGoogle Scholar
  9. Crow JF, Felsenstein J (1982) The effect of assortative mating on the genetic composition of a population. Soc Biol 29(1–2):22–35PubMedGoogle Scholar
  10. Eastwick PW, Luchies LB, Finkel EJ, Hunt LL (2014) The predictive validity of ideal partner preferences: a review and meta-analysis. Psychol Bull 140(3):623–665. doi: 10.1037/a0032432 CrossRefPubMedGoogle Scholar
  11. Eysenck SBG, Eysenck HJ, Barrett P (1985) A revised version of the psychoticism scale. Personal Individ Differ 6(1):21–29. doi: 10.1016/0191-8869(85)90026-1 CrossRefGoogle Scholar
  12. Feingold A (1988) Matching for attractiveness in romantic partners and same-sex friends: a meta-analysis and theoretical critique. Psychol Bull 104(2):226–235. doi: 10.1037/0033-2909.104.2.226 CrossRefGoogle Scholar
  13. Freeman MF, Tukey JW (1950) Transformations related to the angular and the square root. Ann Math Stat 21(4):607–611. doi: 10.1214/aoms/1177729756 CrossRefGoogle Scholar
  14. Grant JD, Heath AC, Bucholz KK, Madden PAF, Agrawal A, Statham DJ, Martin NG (2007) Spousal concordance for alcohol dependence: evidence for assortative mating or spousal interaction effects? Alcohol Clin Exp Res 31(5):717–728. doi: 10.1111/j.1530-0277.2007.00356.x CrossRefPubMedGoogle Scholar
  15. Hatemi PK, Hibbing JR, Medland SE, Keller MC, Alford JR, Smith KB, Eaves LJ (2010) Not by twins alone: using the extended family design to investigate genetic influence on political beliefs. Am J Polit Sci 54(3):798–814. doi: 10.1111/j.1540-5907.2010.00461.x CrossRefGoogle Scholar
  16. Heath AC, Eaves LJ (1985) Resolving the effects of phenotype and social background on mate selection. Behav Genet 15(1):15–30. doi: 10.1007/BF01071929 CrossRefPubMedGoogle Scholar
  17. Heath AC, Cloninger CR, Martin NG (1994) Testing a model for the genetic structure of personality: a comparison of the personality systems of Cloninger and Eysenck. J Pers Soc Psychol 66(4):762. doi: 10.1037/0022-3514.66.4.762 CrossRefPubMedGoogle Scholar
  18. IBM Corp. (2013). IBM SPSS Statistics for Macintosh, Version 22.0. Armonk, NY: IBM CorpGoogle Scholar
  19. Keller MC, Medland SE, Duncan LE (2010) Are extended twin family designs worth the trouble? A comparison of the bias, precision, and accuracy of parameters estimated in four twin family models. Behav Genet 40(3):377–393. doi: 10.1007/s10519-009-9320-x CrossRefPubMedGoogle Scholar
  20. Keller MC, Garver-Apgar CE, Wright JC, Martin NG, Corley RP, Stallings MC, Zietsch BP (2013) The genetic correlation between height and IQ: shared genes or assortative mating? PLoS Genet. doi: 10.1371/journal.pgen.1004329 Google Scholar
  21. Kendler KS, Myers J (2009) A developmental twin study of church attendance and alcohol and nicotine consumption: a model for analyzing the changing impact of genes and environment. Am J Psychiatry 166(10):1150–1155. doi: 10.1176/appi.ajp.2009.09020182 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Klohnen EC, Mendelsohn GA (1998) Partner selection for personality characteristics: a couple-centered approach. Pers Soc Psychol Bull 24(3):268–278. doi: 10.1177/0146167298243004 CrossRefGoogle Scholar
  23. Koenig LB, McGue M, Iacono WG (2009) Rearing environmental influences on religiousness: an investigation of adolescent adoptees. Personal Individ Differ 47(6):652–656. doi: 10.1016/j.paid.2009.06.003 CrossRefGoogle Scholar
  24. Krueger R, Moffitt T, Caspi A, Bleske A, Silva P (1998) Assortative mating for antisocial behavior: developmental and methodological implications. Behav Genet 28(3):173–186. doi: 10.1023/A:1021419013124 CrossRefPubMedGoogle Scholar
  25. Kurzban R, Weeden J (2005) HurryDate: mate preferences in action. Evolut Hum Behav 26(3):227–244. doi: 10.1016/j.evolhumbehav.2004.08.012 CrossRefGoogle Scholar
  26. Lande R (1977) The influence of the mating system on the maintenance of genetic variability in polygenic characters. Genetics 86(2):485–498PubMedPubMedCentralGoogle Scholar
  27. Li NP, Meltzer AL (2015) The validity of sex-differentiated mate preferences: reconciling the seemingly conflicting evidence. Evolut Behav Sci 9(2):89–106. doi: 10.1037/ebs0000036 CrossRefGoogle Scholar
  28. Li NP, Yong JC, Tov W, Sng O, Fletcher GJO, Valentine KA, Balliet D (2013) Mate preferences do predict attraction and choices in the early stages of mate selection. J Pers Soc Psychol 105(5):757–776. doi: 10.1037/a0033777 CrossRefPubMedGoogle Scholar
  29. Lykken DT, Tellegen A (1993) Is human mating adventitious or the result of lawful choice? A twin study of mate selection. J Pers Soc Psychol 65(1):56CrossRefPubMedGoogle Scholar
  30. Martin NG, Eaves LJ, Heath AC, Jardine R, Feingold LM, Eysenck HJ (1986) Transmission of social attitudes. Proc Natl Acad Sci USA 83(12):4364–4368. doi: 10.1073/pnas.83.12.4364 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mascie-Taylor CGN (1989) Spouse similarity for IQ and personality and convergence. Behav Genet 19(2):223–227CrossRefPubMedGoogle Scholar
  32. Mascie-Taylor CGN, Vandenberg SG (1988) Assortative mating for IQ and personality due to propinquity and personal preference. Behav Genet 18(3):339–345. doi: 10.1007/BF01260934 CrossRefPubMedGoogle Scholar
  33. Nagoshi CT, Johnson RC, Ahern FM (1987) Phenotypic assortative mating vs. social homogamy among Japanese and Chinese parents in the Hawaii Family Study of Cognition. Behav Genet 17(5):477–485. doi: 10.1007/BF01073114 CrossRefPubMedGoogle Scholar
  34. Neale MC, Cardon LC (1992) Methodology for genetic studies of twins and families. Kluwer Academic Publishers, BostonCrossRefGoogle Scholar
  35. Nordsletten AE, Larsson H, Crowley JJ, Almqvist C, Lichtenstein P, Mataix-Cols D (2016) Patterns of nonrandom mating within and across 11 major psychiatric disorders. 73(4)Google Scholar
  36. Penke L, Todd PM, Lenton AP, Fasolo B (2007) How self-assessments can guide human mating decisions. In: Geher G, Miller GF (eds) Mating intelligence: sex, relationships, and the mind’s reproductive system. Erlbaum, Mahwah, pp 37–75Google Scholar
  37. Plomin R, DeFries JC, Roberts MK (1977) Assortative mating by unwed biological parents of adopted children. Science 196(4288):449–450. doi: 10.1126/science.850790 CrossRefPubMedGoogle Scholar
  38. Polderman TJC, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM, Posthuma D (2015) Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet Adv Online Publ. doi: 10.1038/ng.3285 Google Scholar
  39. Posner SF, Baker L, Heath A, Martin NG (1996) Social contact, social attitudes, and twin similarity. Behav Genet 26(2):123–133. doi: 10.1007/BF02359890 CrossRefPubMedGoogle Scholar
  40. Posthuma D, Boomsmsa DI (2000) A note on the statistical power in extended twin designs. Behav Genet 30:147–158CrossRefPubMedGoogle Scholar
  41. Posthuma D, Beem AL, de Geus EJC, van Baal GCM, von Hjelmborg JB, Iachine I, Boomsma DI (2003) Theory and practice in quantitative genetics. Twin Res 6(5):361–376. doi: 10.1375/136905203770326367 CrossRefPubMedGoogle Scholar
  42. Price RA, Vandenberg SG (1980) Spouse similarity in American and Swedish couples. Behav Genet 10(1):59–71. doi: 10.1007/BF01067319 CrossRefPubMedGoogle Scholar
  43. Qvarnstrom A, Brommer JE, Gustafsson L (2006) Testing the genetics underlying the co-evolution of mate choice and ornament in the wild. Nat 441(7089):84–86. doi:http://www.nature.com/nature/journal/v441/n7089/suppinfo/nature04564_S1.html
  44. R Core Team (2014) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
  45. Reynolds CA, Baker LA, Pedersen NL (1996) Models of spouse similarity: applications to fluid ability measured in twins and their spouses. Behav Genet 26(2):73–88. doi: 10.1007/BF02359886 CrossRefPubMedGoogle Scholar
  46. Reynolds CA, Baker LA, Pedersen NL (2000) Multivariate models of mixed assortment: phenotypic assortment and social homogamy for education and fluid ability. Behav Genet 30(6):455–476. doi: 10.1023/A:1010250818089 CrossRefPubMedGoogle Scholar
  47. Schwartz CR (2013) Trends and variation in assortative mating: causes and consequences. Ann Rev Sociol 39:451–470. doi: 10.1146/annurev-soc-071312-145544 CrossRefGoogle Scholar
  48. Verweij KJH, Burri AV, Zietsch BP (2012) Evidence for genetic variation in human mate preferences for sexually dimorphic physical traits. PLoS ONE 7(11):e49294. doi: 10.1371/journal.pone.0049294 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Verweij KJH, Burri AV, Zietsch BP (2014) Testing the prediction from sexual selection of a positive genetic correlation between human mate preferences and corresponding traits. Evolut Hum Behav 35(6):497–501. doi: 10.1016/j.evolhumbehav.2014.06.009 CrossRefGoogle Scholar
  50. Watson D, Klohnen EC, Casillas A, Nus Simms E, Haig J, Berry DS (2004) Match makers and deal breakers: analyses of assortative mating in newlywed couples. J Pers 72(5):1029–1068. doi: 10.1111/j.0022-3506.2004.00289.x CrossRefPubMedGoogle Scholar
  51. Wilson SR (1973) The correlation between relatives under the multifactorial model with assortative mating. Ann Hum Genet 37(2):189–204. doi: 10.1111/j.1469-1809.1973.tb01826.x CrossRefPubMedGoogle Scholar
  52. Wright S (1921) Systems of mating. III. Assortative mating based on somatic resemblance. Genetics 6(2):144–161PubMedPubMedCentralGoogle Scholar
  53. Zietsch BP, Verweij KJH, Heath AC, Martin NG (2011) Variation in human mate choice: simultaneously investigating heritability, parental influence, sexual imprinting and assortative mating. Am Nat 177(5):605–616. doi: 10.1086/659629 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zietsch BP, Verweij KJH, Burri AV (2012) Heritability of preferences for multiple cues of mate quality in humans. Evolution 66:1762–1772CrossRefPubMedGoogle Scholar
  55. Zietsch BP, Lee AJ, Sherlock JM, Jern P (2015) Variation in women’s facial masculinity preference is better explained by genetic differences than by previously identified context-dependent effects. Psychol Sci. doi: 10.1177/0956797615591770 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • James M. Sherlock
    • 1
    Email author
  • Karin J. H. Verweij
    • 1
    • 2
  • Sean C. Murphy
    • 3
  • Andrew C. Heath
    • 4
  • Nicholas G. Martin
    • 5
  • Brendan P. Zietsch
    • 1
    • 5
    Email author
  1. 1.School of PsychologyThe University of QueenslandSt LuciaAustralia
  2. 2.Department of Biological PsychologyVU UniversityAmsterdamThe Netherlands
  3. 3.Melbourne School of Psychological SciencesThe University of MelbourneParkvilleAustralia
  4. 4.Department of PsychiatryWashington University School of MedicineSt. LouisUSA
  5. 5.Genetic EpidemiologyQIMR Berghofer Medical Research InstituteBrisbaneAustralia

Personalised recommendations