Behavior Genetics

, Volume 46, Issue 3, pp 467–477 | Cite as

Pre- and Perinatal Ischemia-Hypoxia, the Ischemia-Hypoxia Response Pathway, and ADHD Risk

  • Taylor F. Smith
  • Rainald Schmidt-Kastner
  • John E. McGeary
  • Jessica A. Kaczorowski
  • Valerie S. Knopik
Original Research

Abstract

This review focuses on how measured pre- and perinatal environmental and (epi)genetic risk factors are interrelated and potentially influence one, of many, common developmental pathway towards ADHD. Consistent with the Developmental Origins of Health and Disease hypothesis, lower birth weight is associated with increased ADHD risk. Prenatal ischemia-hypoxia (insufficient blood and oxygen supply in utero) is a primary pathway to lower birth weight and produces neurodevelopmental risk for ADHD. To promote tissue survival in the context of ischemia-hypoxia, ischemia-hypoxia response (IHR) pathway gene expression is altered in the developing brain and peripheral tissues. Although altered IHR gene expression is adaptive in the context of ischemia-hypoxia, lasting IHR epigenetic modifications may lead to increased ADHD risk. Taken together, IHR genetic vulnerability to ischemia-hypoxia and IHR epigenetic alterations following prenatal ischemia-hypoxia may result in neurodevelopmental vulnerability for ADHD. Limitations of the extant literature and future directions for genetically-informed research are discussed.

Keywords

ADHD Prenatal Ischemia Hypoxia Epigenetic Developmental pathway 

Supplementary material

10519_2016_9784_MOESM1_ESM.docx (1.1 mb)
Basal expression of CCBL1, CCBL2, IL16, NRP1, NRP2, NTRK1, and NTRK3 (see Smith et al. 2014) probes in the prefrontal cortex across development. Developmental expression profiles were created using BrainCloud (Colantuoni et al. 2011; http://braincloud.jhmi.edu/plots/). Supplementary material 1 (DOCX 1167 kb)

References

  1. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders: DSM-5. Am Psychiatr Assoc, ArlingtonCrossRefGoogle Scholar
  2. Angold A, Costello EJ, Erkanli A (1999) Comorbidity. J Child Psychol Psychiatry 40(1):57–87PubMedCrossRefGoogle Scholar
  3. Back S, Rosenberg P (2014) Pathophysiology of glia in perinatal white matter injury. Glia 62(11):1790PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barbaresi WJ, Colligan RC, Weaver AL, Voigt RG, Killian JM, Katusic SK (2013) Mortality, ADHD, and psychosocial adversity in adults with childhood ADHD: a prospective study. Pediatrics 131(4):637–644PubMedPubMedCentralCrossRefGoogle Scholar
  5. Barker DJP (2007) The origins of the developmental origins theory. J Intern Med 261(5):412–417PubMedCrossRefGoogle Scholar
  6. Bassan H, Kidron D, Bassan M, Rotstein M, Kariv N, Giladi E, Davidson A, Gozes I, Harel S (2010) The effects of vascular intrauterine growth retardation on cortical astrocytes. J Matern Fetal Neonatal Med 23(7):595–600PubMedCrossRefGoogle Scholar
  7. Biederman J, Faraone SV (2005) Attention-deficit hyperactivity disorder. Lancet 366(9481):237–248PubMedCrossRefGoogle Scholar
  8. Bjelke B, Andersson K, Ogren SO, Bolme P (1991) Asphyctic lesion: proliferation of tyrosine hydroxylase-immunoreactive nerve cell bodies in the rat substantia nigra and functional changes in dopamine neurotransmission. Brain Res 543(1):1–9PubMedCrossRefGoogle Scholar
  9. Boksa P, El-Khodor BF (2003) Birth insult interacts with stress at adulthood to alter dopaminergic function in animal models: possible implications for schizophrenia and other disorders. Neurosci Biobehav Rev 27(1–2):91–101PubMedCrossRefGoogle Scholar
  10. Bosco C, Diaz E (2012) Placental hypoxia and foetal development versus alcohol exposure in pregnancy. Alcohol Alcohol 47(2):109–117PubMedCrossRefGoogle Scholar
  11. Boulet SL, Schieve LA, Boyle CA (2011) Birth weight and health and developmental outcomes in US children, 1997–2005. Matern Child Health J 15(7):836–844PubMedCrossRefGoogle Scholar
  12. Breslau N, Brown G, DelDotto J, Kumar S, Ezhuthachan S, Andreski P, Hufnagle K (1996) Psychiatric sequelae of low birth weight at 6 years of age. J Abnorm Child Psychol 24(3):385–400PubMedCrossRefGoogle Scholar
  13. Brown N, Inder T, Bear M, Hunt R, Anderson P, Doyle L (2009) Neurobehavior at term and white and gray matter abnormalities in very preterm infants. J Pediatr 155(1):32–38PubMedCrossRefGoogle Scholar
  14. Bush PG, Mayhew TM, Abramovich DR, Aggett PJ, Burke MD, Page KR (2000) Maternal cigarette smoking and oxygen diffusion across the placenta. Placenta 21(8):824–833PubMedCrossRefGoogle Scholar
  15. Castellanos FX, Tannock R (2002) Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 3(8):617–628PubMedCrossRefGoogle Scholar
  16. Chen Y, Hillefors-Berglund M, Herrera-Marschitz M, Bjelke B, Gross J, Andersson K, von Euler G (1997) Perinatal asphyxia induces long-term changes in dopamine D1, D2, and D3 receptor binding in the rat brain. Exp Neurol 146(1):74–80PubMedCrossRefGoogle Scholar
  17. Class QA, Rickert ME, Larsson H, Lichtenstein P, D’Onofrio BM (2014) Fetal growth and psychiatric and socioeconomic problems: population-based sibling comparison. Br J Psychiatry 205(5):355–361PubMedPubMedCentralCrossRefGoogle Scholar
  18. Colantuoni C, Lipska BK, Ye TZ, Hyde TM, Tao R, Leek JT, Colantuoni EA, Elkahloun AG, Herman MM, Weinberger DR, Kleinman JE (2011) Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478:519–524PubMedPubMedCentralCrossRefGoogle Scholar
  19. Day K, Waite L, Thalacker-Mercer A, West A, Bamman M, Brooks J, Myers R, Absher D (2013) Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol 14(9):R102PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dela Cruz JA, Schmidt-Kastner R, Stevens JA, Steinbusch HW, Rutten BP (2014) Differential distribution of hypoxia-inducible factor 1-beta (ARNT or ARNT2) in mouse substantia nigra and ventral tegmental area. J Chem Neuroanat 61–62:64–71PubMedCrossRefGoogle Scholar
  21. Derrick M, Drobyshevsky A, Ji X, Tan S (2007) A model of cerebral palsy from fetal hypoxia-ischemia. Stroke 38(2 Suppl):731–735PubMedCrossRefGoogle Scholar
  22. Dick DM, Agrawal A, Keller MC, Adkins A, Aliev F, Monroe S, Hewitt JK, Kendler KS, Sher KJ (2015) Candidate gene-environment interaction research: reflections and recommendations. Perspect Psychol Sci 10(1):37–59PubMedPubMedCentralCrossRefGoogle Scholar
  23. Doshi JA, Hodgkins P, Kahle J, Sikirica V, Cangelosi MJ, Setyawan J, Erder MH, Neumann PJ (2012) Economic impact of childhood and adult attention-deficit/hyperactivity disorder in the United States. J Am Acad Child Adolesc Psychiatry 51(10):990–1002PubMedCrossRefGoogle Scholar
  24. Elgen I, Sommerfelt K, Markestad T (2003) Population based, controlled study of behavioural problems and psychiatric disorders in low birthweight children at 11 years of age. Obstet Gynecol Surv 58(2):103CrossRefGoogle Scholar
  25. Elia J, Glessner JT, Wang K, Takahashi N, Shtir CJ, Hadley D, Sleiman PM, Zhang H, Kim CE, Robison R (2012) Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nat Genet 44(1):78–84PubMedCentralCrossRefGoogle Scholar
  26. Ellison VJ, Mocatta TJ, Winterbourn CC, Darlow BA, Volpe JJ, Inder TE (2005) The relationship of CSF and plasma cytokine levels to cerebral white matter injury in the premature newborn. Pediatr Res 57(2):282–286PubMedCrossRefGoogle Scholar
  27. Ficks CA, Waldman ID (2009) Gene-environment interactions in attention-deficit/hyperactivity disorder. Curr Psychiatry Rep 11(5):387–392PubMedCrossRefGoogle Scholar
  28. Ficks C, Lahey B, Waldman I (2013) Does low birth weight share common genetic or environmental risk with childhood disruptive disorders? J Abnorm Psychol 122(3):842–853PubMedPubMedCentralCrossRefGoogle Scholar
  29. Filipek PA, Semrud-Clikeman M, Steingard RJ, Renshaw PF, Kennedy DN, Biederman J (1997) Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology 48(3):589–601PubMedCrossRefGoogle Scholar
  30. Froehlich TE, Anixt JS, Loe IM, Chirdkiatgumchai V, Kuan L, Gilman RC (2011) Update on environmental risk factors for attention-deficit/hyperactivity disorder. Curr Psychiatry Rep 13(5):333–344PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fu J, Olofsson P (2006) Restrained cerebral hyperperfusion in response to superimposed acute hypoxemia in growth-restricted human fetuses with established brain-sparing blood flow. Early Hum Dev 82(3):211–216PubMedCrossRefGoogle Scholar
  32. Fu J, Olofsson P (2011) Relations between fetal brain-sparing circulation, oxytocin challenge test, mode of delivery and fetal outcome in growth-restricted term fetuses. Acta Obstet Gyn Scan 90(3):227–230Google Scholar
  33. Gardener H, Spiegelman D, Buka SL (2009) Prenatal risk factors for autism: comprehensive meta-analysis. Br J Psychiatry 195(1):7–14PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gau SS, Tseng WL, Tseng WY, Wu YH, Lo YC (2015) Association between microstructural integrity of frontostriatal tracts and school functioning: ADHD symptoms and executive function as mediators. Psychol Med 45(3):529–543PubMedCrossRefGoogle Scholar
  35. Getahun D, Rhoads GG, Demissie K, Lu SE, Quinn VP, Fassett MJ, Wing DA, Jacobsen SJ (2013) In utero exposure to ischemic-hypoxic conditions and attention-deficit/hyperactivity disorder. Pediatrics 131(1):e53–e61PubMedCrossRefGoogle Scholar
  36. Gluckman PD, Hanson MA (2004) Living with the past: evolution, development, and patterns of disease. Science 305(5691):1733–1736PubMedCrossRefGoogle Scholar
  37. Groen-Blukhuis MM, Middeldorp CM, van Beijsterveldt CE, Boomsma DI (2011) Evidence for a causal association of low birth weight and attention problems. J Am Acad Child Adolesc Psychiatry 50(12):1247–1254CrossRefGoogle Scholar
  38. Guvendag GE, Karcaaltincaba D, Kandemir O, Kiykac S, Mentese A (2013) Cord blood oxidative stress markers correlate with umbilical artery pulsatility in fetal growth restriction. J Matern Fetal Neonatal Med 26(6):576CrossRefGoogle Scholar
  39. Heinonen K, Räikkönen K, Pesonen A-K, Andersson S, Kajantie E, Eriksson JG, Wolke D, Lano A (2010) Behavioural symptoms of attention deficit/hyperactivity disorder in preterm and term children born small and appropriate for gestational age: a longitudinal study. BMC Pediatr 10:91PubMedPubMedCentralCrossRefGoogle Scholar
  40. Henriksen T, Clausen T (2002) The fetal origins hypothesis: placental insufficiency and inheritance versus maternal malnutrition in well-nourished populations. Acta Obstet Gyn Scan 81(2):112–114CrossRefGoogle Scholar
  41. Horwood L, Mogridge N, Darlow B (1998) Cognitive, educational, and behavioural outcomes at 7 to 8 years in a national very low birthweight cohort. Arch Dis Child Fetal Neonatal Ed 79(1):F12PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hultman CM, Torrång A, Tuvblad C, Cnattingius S, Larsson JO, Lichtensetin P (2007) Birth weight and attention-deficit/hyperactivity symptoms in childhood and ealry adolescence: a prospective Swedish twin study. J Am Acad Child Adolesc Psychiatry 46(3):370–377PubMedCrossRefGoogle Scholar
  43. Inamura K, Olsson Y, Siesjo BK (1987) Substantia nigra damage induced by ischemia in hyperglycemic rats. A light and electron microscopic study. Acta Neuropathol 75(2):131–139PubMedCrossRefGoogle Scholar
  44. Indredavik M, Vik T, Heyerdahl S, Kulseng S, Fayers P, Brubakk A (2004) Psychiatric symptoms and disorders in adolescents with low birth weight. Arch Dis Child Fetal Neonatal Ed 89(5):F445PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jellema R, Lima PV, Zwanenburg A, Ophelders D, De Munter S, Vanderlocht J, Germeraad W, Kuypers E, Collins J, Cleutjens J (2013) Cerebral inflammation and mobilization of the peripheral immune system following global hypoxia-ischemia in preterm sheep. J Neuroinflamm 10:13CrossRefGoogle Scholar
  46. Jesmin S, Togashi H, Mowa CN, Ueno K, Yamaguchi T, Shibayama A, Miyauchi T, Sakuma I, Yoshioka M (2004) Characterization of regional cerebral blood flow and expression of angiogenic growth factors in the frontal cortex of juvenile male SHRSP and SHR. Brain Res 2:172–182CrossRefGoogle Scholar
  47. Kates WR, Frederikse M, Mostofsky SH, Folley BS, Cooper K, Mazur-Hopkins P, Kofman O, Singer HS, Denckla MB, Pearlson GD, Kaufmann WE (2002) MRI parcellation of the frontal lobe in boys with attention deficit hyperactivity disorder or Tourette syndrome. Psychiatry Res 116(1–2):63–81PubMedCrossRefGoogle Scholar
  48. Kaur C, Ling E (2008) Blood brain barrier in hypoxic-ischemic conditions. Curr Neurovasc Res 5(1):71PubMedCrossRefGoogle Scholar
  49. Kinzler W, Vintzileos A (2008) Fetal growth restriction: a modern approach. Curr Opin Obstet Gynecol 20(2):125PubMedCrossRefGoogle Scholar
  50. Knopik VS (2009) Maternal smoking during pregnancy and child outcomes: real or spurious effect? Dev Neuropsychol 34(1):1–36PubMedPubMedCentralCrossRefGoogle Scholar
  51. Knopik VS (2010) Commentary: smoking during pregnancy—genes and environment weigh in. Int J Epidemiol 39(5):1203–1205PubMedPubMedCentralCrossRefGoogle Scholar
  52. Knopik VS, Sparrow EP, Madden PA, Bucholz KK, Hudziak JJ, Reich W, Slutske WS, Grant JD, McLaughlin TL, Todoro A, Todd RD, Heath AC (2005) Contributions of parental alcoholism, prenatal substance exposure, and genetic transmission to child ADHD risk: a female twin study. Psychol Med 35(5):625-635PubMedCrossRefGoogle Scholar
  53. Knopik VS, Heath AC, Jacob T, Slutske WS, Bucholz KK, Madden PA, Waldron M, Martin NG (2006) Maternal alcohol use disorder and offspring ADHD: disentangling genetic and environmental effects using a children-of-twins design. Psychol Med 36(10):1461–1471PubMedCrossRefGoogle Scholar
  54. Knopik VS, Maccani MA, Francazio S, McGeary JE (2012) The epigenetics of maternal cigarette smoking during pregnancy and effects on child development. Dev Psychopathol 24(4):1377–1390PubMedPubMedCentralCrossRefGoogle Scholar
  55. Knopik VS, Marceau K, Palmer RHC, Smith TF, Heath AC (2015) Maternal smoking during pregnancy and offspring birth weight: A genetically-informed approach incorporating multiple raters. Behav Genet. doi:10.1007/s10519-015-9750-6 Google Scholar
  56. Knopik VS, Marceau K, Bidwell LC, Palmer RHC, Smith TF, Todorov A, Evans AS, Heath AC (2016) Smoking during pregnancy and ADHD risk: a genetically-informed, multiple-rater approach. Am J Med Genet Part B. doi:10.1002/ajmg.b.32421 PubMedGoogle Scholar
  57. Kolevzon A, Gross R, Reichenberg A (2007) Prenatal and perinatal risk factors for autism: a review and integration of findings. Arch Pediatr Adolesc Med 161(4):326–333PubMedCrossRefGoogle Scholar
  58. Krakowiak P, Goines PE, Tancredi DJ, Ashwood P, Handen RL, Hertz-Picciotto I, Van de Water J (2015) Neonatal cytokine profiles associated with autism spectrum disorder. Biol Psychiatry. doi:10.1016/jbiopsych.2015.08.007 PubMedGoogle Scholar
  59. Lahti J, Raikkonen K, Kajantie E, Heinonen K, Pesonen AK, Jarvenpaa AL, Strandberg T (2006) Small body size at birth and behavioural symptoms of ADHD in children aged five to six years. J Child Psychol Psychiatry 47(11):1167–1174PubMedCrossRefGoogle Scholar
  60. Laplante F, Brake WG, Chehab SL, Sullivan RM (2012) Sex differences in the effects of perinatal anoxia on dopamine function in rats. Neurosci Lett 506(1):89–93PubMedCrossRefGoogle Scholar
  61. Larroque B, Marret S, Ancel P, Arnaud C, Marpeau L, Supernant K, Pierrat V, Rozé J, Matis J, Cambonie G (2003) White matter damage and intraventricular hemorrhage in very preterm infants: the EPIPAGE study. J Pediatr 143(4):477–483PubMedCrossRefGoogle Scholar
  62. Lasky-Su J (2013) A network medicine approach to psychiatric genetics. Am J Med Genet B Neuropsychiatr Genet 162(7):579CrossRefGoogle Scholar
  63. Lee DW, Rajagopalan S, Siddiq A, Gwiazda R, Yang L, Beal MF, Ratan RR, Andersen JK (2009) Inhibition of prolyl hydroxylase protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity: model for the potential involvement of the hypoxia-inducible factor pathway in Parkinson disease. J Biol Chem 284(42):29065–29076PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lesch KP, Merker S, Reif A, Novak M (2013) Dances with black widow spiders: dysregulation of glutamate signalling enters centre stage in ADHD. Eur Neuropsychopharmacol 23(6):479–491PubMedCrossRefGoogle Scholar
  65. Lewis S, Murray R (1987) Obstetric complications, neurodevelopmental deviance, and risk of schizophrenia. J Psychiatr Res 21(4):413PubMedCrossRefGoogle Scholar
  66. Linnet KM, Dalsgaard S, Obel C, Wisborg K, Henriksen TB, Rodriguez A, Kotimaa A, Moilanen I, Thomsen PH, Olsen J, Jarvelin MR (2003) Maternal lifestyle factors in pregnancy risk of attention deficit hyperactivity disorder and associated behaviors: review of the current evidence. Am J Psychiatry 160(6):1028–1040PubMedCrossRefGoogle Scholar
  67. Linnet K, Wisborg K, Agerbo E, Secher N, Thomsen P, Henriksen T (2006) Gestational age, birth weight, and the risk of hyperkinetic disorder. Arch Dis Child 91(8):655–660PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lou HC (1996) Etiology and pathogenesis of attention-deficit hyperactivity disorder (ADHD): significance of prematurity and perinatal hypoxic-haemodynamic encephalopathy. Acta Paediatr 85(11):1266–1271PubMedCrossRefGoogle Scholar
  69. Lou HC, Rosa P, Pryds O, Karrebaek H, Lunding J, Cumming P, Gjedde A (2004) ADHD: increased dopamine receptor availability linked to attention deficit and low neonatal cerebral blood flow. Dev Med Child Neurol 46(3):179–183PubMedCrossRefGoogle Scholar
  70. Mac Gabhann F, Popel AS (2008) Systems biology of vascular endothelial growth factors. Microcirculation 15(8):715–738PubMedPubMedCentralCrossRefGoogle Scholar
  71. Maccani MA, Marsit CJ (2009) Epigenetics in the placenta. Am J Reprod Immunol 62(2):78–89PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mallard E, Rehn A, Rees S, Tolcos M, Copolov D (1999) Ventriculomegaly and reduced hippocampal volume following intrauterine growth-restriction: implications for the aetiology of schizophrenia. Schizophr Res 40(1):11–21PubMedCrossRefGoogle Scholar
  73. Maulik D (2006) Fetal growth compromise: definitions, standards, and classification. Clin Obstet Gynecol 49(2):214–218PubMedCrossRefGoogle Scholar
  74. McClendon E, Chen K, Gong X, Sharifnia E, Hagen M, Cai V, Shaver DC, Riddle A, Dean JM, Gunn AJ, Mohr C, Kaplan JS, Rossi DJ, Kroenke CD, Hohimer AR, Back SA (2014) Prenatal cerebral ischemia triggers dysmaturation of caudate projection neurons. Ann Neurol 75(4):508–524PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mick E, Biederman J, Prince J, Fischer MJ, Faraone SV (2002) Impact of low birth weight on attention-deficit hyperactivity disorder. J Dev Behav Pediatr 23(1):16–22PubMedCrossRefGoogle Scholar
  76. Mill J, Petronis A (2008) Pre- and peri-natal environmental risks for attention-deficit hyperactivity disorder (ADHD): the potential role of epigenetic processes in mediating susceptibility. J Child Psychol Psychiatry 49(10):1020–1030PubMedCrossRefGoogle Scholar
  77. Milosevic J, Maisel M, Wegner F, Leuchtenberger J, Wenger RH, Gerlach M, Storch A, Schwarz J (2007) Lack of hypoxia-inducible factor-1 alpha impairs midbrain neural precursor cells involving vascular endothelial growth factor signaling. J Neurosci 27(2):412–421PubMedCrossRefGoogle Scholar
  78. Mimura I, Nangaku M, Kanki Y, Tsutsumi S, Inoue T, Kohro T, Yamamoto S, Fujita T, Shimamura T, Suehiro J, Taguchi A, Kobayashi M, Tanimura K, Inagaki T, Tanaka T, Hamakubo T, Sakai J, Aburatani H, Kodama T, Wada Y (2012) Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol Cell Biol 32(15):3018–3032PubMedPubMedCentralCrossRefGoogle Scholar
  79. Mittal VA, Ellman LM, Cannon TD (2008) Gene-environment interaction and covariation in schizophrenia: the role of obstetric complications. Schizophr Bull 34(6):1083–1094PubMedPubMedCentralCrossRefGoogle Scholar
  80. Moffitt TE, Caspi A, Rutter M (2005) Strategy for investigating interactions between measured genes and measured environments. Arch Gen Psychiatry 62(5):473–481PubMedCrossRefGoogle Scholar
  81. Mostofsky SH, Cooper KL, Kates WR, Denckla MB, Kaufmann WE (2002) Smaller prefrontal and premotor volumes in boys with attention-deficit/hyperactivity disorder. Biol Psychiatry 52(8):785–794PubMedCrossRefGoogle Scholar
  82. Mueller BR, Bale TL (2008) Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci 28(36):9055–9065PubMedPubMedCentralCrossRefGoogle Scholar
  83. Murray AJ (2012) Oxygen delivery and fetal-placental growth: beyond a question of supply and demand? Placenta 33(Suppl 2):e16–e22PubMedCrossRefGoogle Scholar
  84. Mwaniki MK, Atieno M, Lawn JE, Newton CR (2012) Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review. Lancet 379(9814):445–452PubMedPubMedCentralCrossRefGoogle Scholar
  85. Myint AM, Kim YK, Verkerk R, Scharpe S, Steinbusch H, Leonard B (2007) Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 98(1–2):143–151PubMedCrossRefGoogle Scholar
  86. Nigg JT (2005) Neuropsychologic theory and findings in attention-deficit/hyperactivity disorder: the state of the field and salient challenges for the coming decade. Biol Psychiatry 57(11):1424–1435PubMedCrossRefGoogle Scholar
  87. Nigg JT (2006) What causes ADHD? Understanding what goes wrong and why. Guilford Press, New YorkGoogle Scholar
  88. Nigg J (2012) Environment, developmental origins, and attention-deficit/hyperactivity disorder. Arch Pediatr Adolesc Med 166(4):387–388PubMedPubMedCentralCrossRefGoogle Scholar
  89. Nigg J, Nikolas M, Burt SA (2010) Measured gene-by-environment interaction in relation to attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 49(9):863–873PubMedPubMedCentralCrossRefGoogle Scholar
  90. Oades RD (2011) An exploration of the associations of pregnancy and perinatal features with cytokines and tryptophan/kynurenine metabolism in children with attention-deficit hyperactivity disorder (ADHD). Atten Defic Hyperact Disord 3(4):301–318PubMedCrossRefGoogle Scholar
  91. Oades RD, Myint AM, Dauvermann MR, Schimmelmann BG, Schwarz MJ (2010) Attention-deficit hyperactivity disorder (ADHD) and glial integrity: an exploration of associations of cytokines and kynurenine metabolites with symptoms and attention. Behav Brain Funct 6:32PubMedPubMedCentralCrossRefGoogle Scholar
  92. Overmeyer S, Bullmore ET, Suckling J, Simmons A, Williams SC, Santosh PJ, Taylor E (2001) Distributed grey and white matter deficits in hyperkinetic disorder: MRI evidence for anatomical abnormality in an attentional network. Psychol Med 31(8):1425–1435PubMedCrossRefGoogle Scholar
  93. Owens EB, Hinshaw SP (2013) Perinatal problems and psychiatric comorbidity among children with ADHD. J Clin Child Adolesc Psychol 42(6):762–768PubMedCrossRefGoogle Scholar
  94. Peterson B, Anderson A, Ehrenkranz R, Staib L, Tageldin M, Colson E, Gore J, Duncan C, Makuch R, Ment L (2003) Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants. Pediatrics 111(5):939PubMedCrossRefGoogle Scholar
  95. Phua DY, Rifkin-Graboi A, Saw SM, Meaney MJ, Qiu A (2012) Executive functions of six-year-old boys with normal birth weight and gestational age. PLoS One 7(4):e36502PubMedPubMedCentralCrossRefGoogle Scholar
  96. Pineda DA, Palacio LG, Puerta IC, Merchan V, Arango CP, Galvis AY, Gomez M, Aguirre DC, Lopera F, Arcos-Burgos M (2007) Environmental influences that affect attention deficit/hyperactivity disorder: study of a genetic isolate. Eur Child Adolesc Psychiatry 16(5):337–346PubMedCrossRefGoogle Scholar
  97. Poelmans G, Pauls D, Buitelaar J, Franke B (2011) Integrated genome-wide association study findings: identification of a neurodevelopmental network for attention deficit hyperactivity disorder. Am J Psychiatry 168(4):365PubMedCrossRefGoogle Scholar
  98. Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164(6):942–948PubMedCrossRefGoogle Scholar
  99. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, Wayland M, Freeman T, Dudbridge F, Lilley KS, Karp NA, Hester S, Tkachev D, Mimmack ML, Yolken RH, Webster MJ, Torrey EF, Bahn S (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatr 9(7):684–697CrossRefGoogle Scholar
  100. Rehn A, Van Den Buuse M, Copolov D, Briscoe T, Lambert G, Rees S (2004) An animal model of chronic placental insufficiency: relevance to neurodevelopmental disorders including schizophrenia. Neuroscience 129(2):381–391PubMedCrossRefGoogle Scholar
  101. Ribases M, Hervas A, Ramos-Quiroga JA, Bosch R, Bielsa A, Gastaminza X, Fernandez-Anguiano M, Nogueira M, Gomez-Barros N, Valero S, Gratacos M, Estivill X, Casas M, Cormand B, Bayes M (2008) Association study of 10 genes encoding neurotrophic factors and their receptors in adult and child attention-deficit/hyperactivity disorder. Biol Psychiatry 63(10):935–945PubMedCrossRefGoogle Scholar
  102. Roza SJ, Steegers EA, Verburg BO, Jaddoe VW, Moll HA, Hofman A, Verhulst FC, Tiemeier H (2008) What is spared by fetal brain-sparing? Fetal circulatory redistribution and behavioral problems in the general population. Am J Epidemiol 168(10):1145–1152PubMedCrossRefGoogle Scholar
  103. Salmaso N, Jablonska B, Scafidi J, Vaccarino FM, Gallo V (2014) Neurobiology of premature brain injury. Nat Neurosci 17(3):341–346PubMedPubMedCentralCrossRefGoogle Scholar
  104. Sanchez-Mora C, Ribases M, Ramos-Quiroga JA, Casas M, Bosch R, Boreatti-Hummer A, Heine M, Jacob CP, Lesch KP, Fasmer OB, Knappskog PM, Kooij JJ, Kan C, Buitelaar JK, Mick E, Asherson P, Faraone SV, Franke B, Johansson S, Haavik J, Reif A, Bayes M, Cormand B (2010) Meta-analysis of brain-derived neurotrophic factor p.Val66Met in adult ADHD in four European populations. Am J Med Genet B Neuropsychiatr Genet 153B(2):512–523PubMedGoogle Scholar
  105. Schmidt-Kastner R, van Os J, Steinbusch H, Schmitz C (2006) Gene regulation by hypoxia and the neurodevelopmental origin of schizophrenia. Schizophr Res 84(2–3):253–271PubMedCrossRefGoogle Scholar
  106. Schmidt-Kastner R, van Os J, Esquivel G, Steinbusch HW, Rutten BP (2012) An environmental analysis of genes associated with schizophrenia: hypoxia and vascular factors as interacting elements in the neurodevelopmental model. Mol Psychiatr 17(12):1194–1205CrossRefGoogle Scholar
  107. Sharp FR, Bernaudin M (2004) HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 5(6):437–448PubMedCrossRefGoogle Scholar
  108. Shibuya M (2008) Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep 41(4):278–286PubMedCrossRefGoogle Scholar
  109. Shibuya M, Claesson-Welsh L (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312(5):549–560PubMedCrossRefGoogle Scholar
  110. Skowronski K, Dubey S, Rodenhiser D, Coomber B (2010) Ischemia dysregulates DNA methyltransferases and p16INK4a methylation in human colorectal cancer cells. Epigenetics 5(6):547–556PubMedPubMedCentralCrossRefGoogle Scholar
  111. Smith TF, Anastopoulos AD, Garrett ME, Arias-Vasquez A, Franke B, Oades RD, Sonuga-Barke E, Asherson P, Gill M, Buitelaar JK, Sergeant JA, Kollins SH, Faraone SV, Ashley-Koch A, Consortium I (2014) Angiogenic, neurotrophic, and inflammatory system SNPs moderate the association between birth weight and ADHD symptom severity. Am J Med Genet B Neuropsychiatr Genet 165B(8):691–704PubMedCrossRefGoogle Scholar
  112. Sonuga-Barke EJ (2002) Psychological heterogeneity in AD/HD—A dual pathway model of behaviour and cognition. Behav Brain Res 130(1–2):29–36PubMedCrossRefGoogle Scholar
  113. Swanson JD, Wadhwa PM (2008) Developmental origins of child mental health disorders. J Child Psychol Psychiatry 49(10):1009–1019PubMedPubMedCentralCrossRefGoogle Scholar
  114. Swanson JM, Kinsbourne M, Nigg J, Lanphear B, Stefanatos GA, Volkow N, Taylor E, Casey BJ, Castellanos FX, Wadhwa PD (2007) Etiologic subtypes of attention-deficit/hyperactivity disorder: brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychol Rev 17(1):39–59PubMedCrossRefGoogle Scholar
  115. Thapar A, Rice F, Hay D, Boivin J, Langley K, van den Bree M, Rutter M, Harold G (2009) Prenatal smoking might not cause attention-deficit/hyperactivity disorder: evidence from a novel design. Biol Psychiatry 66(8):722–727PubMedPubMedCentralCrossRefGoogle Scholar
  116. Thapar A, Cooper M, Eyre O, Langley K (2013) What have we learnt about the causes of ADHD? J Child Psychol Psychiatry 54(1):3–16PubMedPubMedCentralCrossRefGoogle Scholar
  117. Thuring A, Maršál K, Laurini R (2012) Placental ischemia and changes in umbilical and uteroplacental arterial and venous hemodynamics. J Matern Fetal Neonatal Med 25(6):750PubMedCrossRefGoogle Scholar
  118. Todd RD, Botteron KN (2001) Is attention-deficit/hyperactivity disorder an energy deficiency syndrome? Biol Psychiatry 50(3):151–158PubMedCrossRefGoogle Scholar
  119. Toft P (1999) Prenatal and perinatal striatal injury: a hypothetical cause of attention-deficit–hyperactivity disorder? Pediatr Neurol 21(3):602–610PubMedCrossRefGoogle Scholar
  120. Tolsa C, Zimine S, Warfield S, Freschi M, Sancho R, Lazeyras F, Hanquinet S, Pfizenmaier M, Huppi P (2004) Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction. Pediatr Res 56(1):132PubMedCrossRefGoogle Scholar
  121. Tomita S, Ueno M, Sakamoto M, Kitahama Y, Ueki M, Maekawa N, Sakamoto H, Gassmann M, Kageyama R, Ueda N, Gonzalez FJ, Takahama Y (2003) Defective brain development in mice lacking the Hif-1alpha gene in neural cells. Mol Cell Biol 23(19):6739–6749PubMedPubMedCentralCrossRefGoogle Scholar
  122. Tsai YP, Wu KJ (2013) Epigenetic regulation of hypoxia-responsive gene expression: focusing on chromatin and DNA modifications. Int J Cancer 134(2):249–256PubMedCrossRefGoogle Scholar
  123. Tylee D, Kawaguchi D, Glatt S (2013) On the outside, looking in: A review and evaluation of the comparability of blood and brain-“omes”. Am J Med Genet B Neuropsychiatr Genet 162(7):595–603CrossRefGoogle Scholar
  124. Ungethum U, Chen Y, Gross J, Bjelke B, Bolme P, Eneroth P, Heldt J, Loidl CF, Herrera-Marschitz M, Andersson K (1996) Effects of perinatal asphyxia on the mesostriatal/mesolimbic dopamine system of neonatal and 4-week-old male rats. Exp Brain Res 112(3):403–410PubMedCrossRefGoogle Scholar
  125. van Os J, Wichers M, Danckaerts M, Van Gestel S, Derom C, Vlietinck R (2001) A prospective twin study of birth weight discordance and child problem behavior. Biol Psychiatry 50(8):593–599PubMedCrossRefGoogle Scholar
  126. Viswanathan G, Seto J, Patil S, Nudelman G, Sealfon S (2008) Getting started in biological pathway construction and analysis. PLoS Comput Biol 4(2):e16PubMedPubMedCentralCrossRefGoogle Scholar
  127. Wadhwa PD, Buss C, Entringer S, Swanson JM (2009) Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med 27(5):358–368PubMedPubMedCentralCrossRefGoogle Scholar
  128. Walhovd KB, Fjell AM, Brown TT, Kuperman JM, Chung Y, Hagler DJ Jr, Roddey JC, Erhart M, McCabe C, Akshoomoff N, Amaral DG, Bloss CS, Libiger O, Schork NJ, Darst BF, Casey BJ, Chang L, Ernst TM, Frazier J, Gruen JR, Kaufmann WE, Murray SS, van Zijl P, Mostofsky S, Dale AM, Pediatric Imaging, Neurocognition, Study Group (2012) Long-term influence of normal variation in neonatal characteristics on human brain development. Proc Natl Acad Sci USA 109(49):20089–20094PubMedPubMedCentralCrossRefGoogle Scholar
  129. Walker C, Anderson K, Milano K, Ye S, Tancredi D, Pessah I, Hertz-Picciotto I, Kliman H (2013) Trophoblast inclusions are significantly increased in the placentas of children in families at risk for autism. Biol Psychiatry 74(3):204PubMedPubMedCentralCrossRefGoogle Scholar
  130. Wang X, Meng FS, Liu ZY, Fan JM, Hao K, Chen XQ, Du JZ (2013) Gestational hypoxia induces sex-differential methylation of Crhr1 linked to anxiety-like behavior. Mol Neurobiol 48(3):544–555PubMedCrossRefGoogle Scholar
  131. Watson JA, Watson CJ, McCann A, Baugh J (2010) Epigenetics, the epicenter of the hypoxic response. Epigenetics 5(4):293–296PubMedCrossRefGoogle Scholar
  132. Wheaton WW, Chandel NS (2011) Hypoxia 2. Hypoxia regulates cellular metabolism. Am J Physiol Renal Physiol 300(3):C385–C393CrossRefGoogle Scholar
  133. Whitaker A, Van Rossem R, Feldman J, Schonfeld I, Pinto-Martin J, Tarre C, Shaffer D, Paneth N (1997) Psychiatric outcomes in low-birth-weight children at age 6 years: relation to neonatal cranial ultrasound abnormalities. Arch Gen Psychiatry 54(9):847–856PubMedCrossRefGoogle Scholar
  134. Whitaker AH, Feldman JF, Lorenz JM, McNicholas F, Fisher PW, Shen S, Pinto-Martin J, Shaffer D, Paneth N (2011) Neonatal head ultrasound abnormalities in preterm infants and adolescent psychiatric disorders. Arch Gen Psychiatry 68(7):742–752PubMedCrossRefGoogle Scholar
  135. Wu X, Sun J, Li L (2013) Chronic cerebrovascular hypoperfusion affects global DNA methylation and histone acetylation in rat brain. Neurosci Bull 29(6):685–692PubMedCrossRefGoogle Scholar
  136. Yang L, Neale BM, Liu L, Lee SH, Wray NR, Ji N, Li H, Qian Q, Wang D, Li J, Faraone SV, Wang Y, Psychiatric GCAS (2013) Polygenic transmission and complex neuro developmental network for attention deficit hyperactivity disorder: genome-wide association study of both common and rare variants. Am J Med Genet B Neuropsychiatr Genet 162B(5):419–430PubMedCrossRefGoogle Scholar
  137. Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JS, Wiener CM, Sylvester JT, Semenza GL (1999) Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. J Clin Invest 103(5):691–696PubMedPubMedCentralCrossRefGoogle Scholar
  138. Zubrick S, Kurinczuk J, McDermott B, McKelvey R, Silburn S, Davies L (2000) Fetal growth and subsequent mental health problems in children aged 4 to 13 years. Dev Med Child Neurol 42(01):14–20PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Psychology and Child DevelopmentCalifornia Polytechnic State UniversitySan Luis ObispoUSA
  2. 2.Division of Behavioral Genetics, Rhode Island Hospital and Department of Psychiatry and Human BehaviorWarren Alpert Medical School of Brown UniversityProvidenceUSA
  3. 3.Integrated Medical Science Department, CE Schmidt College of MedicineFlorida Atlantic University (FAU)Boca RatonUSA
  4. 4.Providence VA Medical CenterProvidenceUSA

Personalised recommendations