Advertisement

Behavior Genetics

, Volume 46, Issue 3, pp 431–456 | Cite as

A Genetically Informed Study of the Associations Between Maternal Age at Childbearing and Adverse Perinatal Outcomes

  • Ayesha C. SujanEmail author
  • Martin E. Rickert
  • Quetzal A. Class
  • Claire A. Coyne
  • Paul Lichtenstein
  • Catarina Almqvist
  • Henrik Larsson
  • Arvid Sjölander
  • Benjamin B. Lahey
  • Carol van Hulle
  • Irwin Waldman
  • A. Sara Öberg
  • Brian M. D’Onofrio
Original Research

Abstract

We examined associations of maternal age at childbearing (MAC) with gestational age and fetal growth (i.e., birth weight adjusting for gestational age), using two genetically informed designs (cousin and sibling comparisons) and data from two cohorts, a population-based Swedish sample and a nationally representative United States sample. We also conducted sensitivity analyses to test limitations of the designs. The findings were consistent across samples and suggested that, associations observed in the population between younger MAC and shorter gestational age were confounded by shared familial factors; however, associations of advanced MAC with shorter gestational age remained robust after accounting for shared familial factors. In contrast to the gestational age findings, neither early nor advanced MAC was associated with lower fetal growth after accounting for shared familial factors. Given certain assumptions, these findings provide support for a causal association between advanced MAC and shorter gestational age. The results also suggest that there are not causal associations between early MAC and shorter gestational age, between early MAC and lower fetal growth, and between advanced MAC and lower fetal growth.

Keywords

Gestational age Birth weight Fetal growth Maternal age at childbearing Genetically informed designs Quasi-experiments 

Notes

Acknowledgments

This work was supported by a National Science Foundation Graduate Research Fellowship (Grand No. 1342962) awarded to the first author, the Swedish Initiative for Research on Microdata in the Social And Medical Sciences (SIMSAM) framework (Grant No. 340-2013-5867), and the National Institute of Child Health and Human Development (HD061817). This study was approved by the Institutional Review Board at Indiana University and the Karolinska Institute.

Compliance with Ethical Standards

Conflict of Interest

Ayesha C. Sujan, Martin E. Rickert, Quetzal A. Class, Claire A. Coyne, Paul Lichtenstein, Catarina Almqvist, Henrik Larsson, Arvid Sjölander, Benjamin B. Lahey, Carol van Hulle, Irwin Waldman, A. Sara Öberg, and Brian M. D’Onofrio declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

References

  1. Academy of Medical Sciences Working Group (2007) Identifying the environmental causes of disease: How should we decide what to believe and when to take action?. Academy of Medical Sciences, LondonGoogle Scholar
  2. Alan Guttmacher Institute. (2010). U.S. teenage pregnancy statistics: National and state trends and trends by race and ethnicity. New YorkGoogle Scholar
  3. Allison PD (2009) Fixed effects regression models. Sage, Washington DCGoogle Scholar
  4. Astolfi P, Zonta LA (1999) Risks of preterm delivery and association with maternal age, birth order, and fetal gender. Hum Reprod 14(11):2891–2894. doi: 10.1093/humrep/14.11.2891 CrossRefPubMedGoogle Scholar
  5. Bacci S, Bartolucci F, Chiavarini M, Minelli L, Pieroni L (2014) Differences in birthweight outcomes: a longitudinal study based on siblings. Int J Environ Res Public Health 11(6):6472–6484. doi: 10.3390/ijerph110606472 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baker JL, Olsen LW, Sorensen TIA (2008) Weight at birth and all-cause mortality in adulthood. Epidemiology 19(2):197–203. doi: 10.1097/EDE.0b013e31816339c6 CrossRefPubMedGoogle Scholar
  7. Balasch J, Gratacos E (2012) Delayed childbearing: effects on fertility and the outcome of pregnancy. Curr Opin Obstet Gynecol 24(3):187–193. doi: 10.1097/GCO.0b013e3283517908 CrossRefPubMedGoogle Scholar
  8. Bhutta AT, Cleves MA, Casey PH, Cradock MM, Anand KJS (2002) Cognitive and behavioral outcomes of school-aged children who were born preterm—a meta-analysis. JAMA 288(6):728–737. doi: 10.1001/jama.288.6.728 CrossRefPubMedGoogle Scholar
  9. Blennow M, Ewald U, Fritz T, Holmgren PA, Jeppsson A, Lindberg E, Grp E (2009) One-year survival of extremely preterm infants after active perinatal care in Sweden. JAMA 301(21):2225–2233CrossRefGoogle Scholar
  10. Bureau of Labor Statistics, U. S. D. o. L., and National Institute for Child Health and Human Development. (2012). Children of the NLSY79, 1979–2010. from Produced and distributed by the Center for Human Resource Research, The Ohio State UniversityGoogle Scholar
  11. Carolan M (2013) Maternal age ≥ 45 years and maternal and perinatal outcomes: a review of the evidence. Midwifery 29(5):479–489. doi: 10.1016/j.midw.2012.04.001 CrossRefPubMedGoogle Scholar
  12. Class QA, Rickert ME, Langstrom N, Lichtenstein P, D’Onofrio BM (2014a) Birth weight, physical morbidity, and mortality: a population-based sibling-comparison study. Am J Epidemiol 179:550–558CrossRefPubMedPubMedCentralGoogle Scholar
  13. Class QA, Rickert ME, Larsson H, Lichtenstein P, D’Onofrio BM (2014b) Fetal growth and psychiatric and socioeconomic problems: population-based sibling comparison. Br J Psychiatry 205(5):355–361. doi: 10.1192/bjp.bp.113.143693 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cnattingius S, Forman MR, Berendes HW, Isotalo L (1992) Delayed childbearing and risk of adverse perinatal outcome: a population-based study. JAMA 268(7):886–890CrossRefPubMedGoogle Scholar
  15. Coley RL, Chase-Lansdale PL (1998) Adolescent pregnancy and parenthood: recent evidence and future directions. Am Psychol 53(2):152–166. doi: 10.1037/0003-066x.53.2.152 CrossRefPubMedGoogle Scholar
  16. Coyne CA, D’Onofrio BM (2012) Some (but not much) progress toward understanding teenage childbearing: A reveiew of research from the past decade. In: Benson JB (ed) Advances in child development and behavior, vol 42. Academic Press, California, pp 113–152Google Scholar
  17. Crump C, Winkleby MA, Sundquist K, Sundquist J (2010) Preterm birth and psychiatric medication prescription in young adulthood: a Swedish national cohort study. Int J Epidemiol 39(6):1522–1530. doi: 10.1093/ije/dyq103 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Crump C, Sundquist K, Sundquist J, Winkleby M (2011) Gestational age at birth and mortality in young adulthood. JAMA 306(11):1233–1240. doi: 10.1001/jama.2011.1331 CrossRefPubMedGoogle Scholar
  19. D’Onofrio BM, Goodnight JA, Van Hulle CA, Rodgers JL, Rathouz PJ, Waldman ID, Lahey BB (2009) Maternal age at childbirth and offspring disruptive behaviors: testing the causal hypothesis. J Child Psychol Psychiatry 50(8):1018–1028. doi: 10.1111/j.1469-7610.2009.02068.x CrossRefPubMedPubMedCentralGoogle Scholar
  20. D’Onofrio BM, Class QA, Rickert ME, Larsson H, Langstrom N, Lichtenstein P (2013a) Preterm birth and mortality and morbidity a population-based quasi-experimental study. JAMA Psychiatry 70(11):1231–1240. doi: 10.1001/jamapsychiatry.2013.2107 CrossRefPubMedGoogle Scholar
  21. D’Onofrio BM, Lahey BB, Turkheimer E, Lichtenstein P (2013b) The critical need for family-based, quasi-experimental research in integrating genetic and social science research. Am J Public Health 103:S46–S55CrossRefPubMedPubMedCentralGoogle Scholar
  22. Duncan GJ (2012) Give us this day our daily breadth. Child Dev 83(1):6–15. doi: 10.1111/j.1467-8624.2011.01679.x CrossRefPubMedGoogle Scholar
  23. Elliott DS, Huizinga D (1983) Social-class and delinquent-behavior in a national youth panel—1976–1980. Criminology 21(2):149–177. doi: 10.1111/j.1745-9125.1983.tb00256.x CrossRefGoogle Scholar
  24. Freese J (2008) Genetics and the social science explanation of individual outcomes. Am J Sociol 114:S1–S35CrossRefPubMedGoogle Scholar
  25. Gauderman WJ, Witte JS, Thomas DC (1999) Family-based association studies. J Natl Cancer Inst Monogr 26:31–37CrossRefPubMedGoogle Scholar
  26. Geronimus AT, Korenman S (1993) Maternal youth or family background—on the health disadvantages of infants with teenage mothers. Am J Epidemiol 137(2):213–225PubMedGoogle Scholar
  27. Geronimus AT, Korenman S, Hillemeier MM (1994) Does young maternal age adversely affect child-development: evidence from cousin comparisons in the United-States. Popul Dev Rev 20(3):585–609. doi: 10.2307/2137602 CrossRefGoogle Scholar
  28. Gibbs CM, Wendt A, Peters S, Hogue CJ (2012) The impact of early age at first childbirth on maternal and infant health. Paediatr Perinat Epidemiol 26:259–284. doi: 10.1111/j.1365-3016.2012.01290.x CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hedges LV, Olkin I (2014) Statistical method for meta-analysis. Academic press, New YorkGoogle Scholar
  30. Hedges LV, Vevea JL (1998) Fixed-and random-effects models in meta-analysis. Psychol Methods 3(4):486CrossRefGoogle Scholar
  31. Jaffee S, Caspi A, Moffitt TE, Belsky J, Silva P (2001) Why are children born to teen mothers at risk for adverse outcomes in young adulthood? Results from a 20-year longitudinal study. Dev Psychopathol 13(2):377–397. doi: 10.1017/s0954579401002103 CrossRefPubMedGoogle Scholar
  32. Kendler KS (2005) Psychiatric genetics: a methodologic critique. Am J Psychiatry 162(1):3–11. doi: 10.1176/appi.ajp.162.1.3 CrossRefPubMedGoogle Scholar
  33. Knopik VS (2009) Maternal smoking during pregnancy and child outcomes: real or spurious effect? Dev Neuropsychol 34(1):1–36. doi: 10.1080/87565640802564366 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mathiasen R, Hansen BM, Anderson AMN, Greisen G (2009) Socio-economic achievements of individuals born very preterm at the age of 27 to 29 years: a nationwide cohort study. Dev Med Child Neurol 51(11):901–908. doi: 10.1111/j.1469-8749.2009.03331.x CrossRefPubMedGoogle Scholar
  35. Mersky JP, Reynolds AJ (2007) Predictors of early childbearing: evidence from the Chicago longitudinal study. Child Youth Serv Rev 29(1):35–52. doi: 10.1016/j.childyouth.2006.03.009 CrossRefGoogle Scholar
  36. Mitchell BF, Taggart MJ (2009) Are animal models relevant to key aspects of human parturition? Am J Physiol-Regul Integr Comp Physiol 297(3):R525–R545. doi: 10.1152/ajpregu.00153.2009 CrossRefPubMedGoogle Scholar
  37. Newburn-Cook CV, Onyskiw JE (2005) Is older maternal age a risk factor for preterm birth and fetal growth restriction? A systematic review. Health Care Women Int 26(9):852–875. doi: 10.1080/07399330500230912 CrossRefPubMedGoogle Scholar
  38. Nilsen ABV, Waldenstrom U, Hjelmsted A, Rasmussen S, Schytt E (2012) Characteristics of women who are pregnant with their first baby at an advanced age. Acta Obstet Gynecol Scand 91(3):353. doi: 10.1111/j.1600-0412.2011.01335.x CrossRefPubMedGoogle Scholar
  39. Odibo AO, Nelson D, Stamilio DM, Sehdev HM, Macones GA (2006) Advanced maternal age is an independent risk factor for intrauterine growth restriction. Am J Perinatol 23(5):325–328. doi: 10.1055/s-2006-947164 CrossRefPubMedGoogle Scholar
  40. Randloff LA (1977) The CES-D scale: a self report depression scale for research in the general population. Appl Psychol Meas 1:385–401CrossRefGoogle Scholar
  41. Rodgers JL, Bard DE, Miller WB (2007) Multivariate Cholesky models of human female fertility patterns in the NLSY. Behav Genet 37(2):345–361. doi: 10.1007/s10519-006-9137-9 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rosenzweig MR, Wolpin KI (1995) Sisters, siblings, and mothers: the effects of teenage childbearing on birth outcomes in a dynamic family context. Econometrica 63(2):303–326. doi: 10.2307/2951628 CrossRefPubMedGoogle Scholar
  43. Rutter M (2007) Proceeding from observed correlation to causal inference: the use of natural experiments. Perspect Psychol Sci 2:377–395CrossRefPubMedGoogle Scholar
  44. Rutter M, Pickles A, Murray R, Eaves L (2001) Testing hypotheses on specific environmental causal effects on behavior. Psychol Bull 127(3):291–324. doi: 10.1037//0033-2909.127.3.291 CrossRefPubMedGoogle Scholar
  45. Susser E, Eide MG, Begg M (2010) Invited commentary: the use of sibship studies to detect familial confounding. Am J Epidemiol 172(5):537–539. doi: 10.1093/aje/kwq196 CrossRefPubMedGoogle Scholar
  46. Swamy GK, Edwards S, Gelfand A, James SA, Miranda ML (2012) Maternal age, birth order, and race: differential effects on birthweight. J Epidemiol Community Health 66(2):136–142. doi: 10.1136/jech.2009.088567 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Turley RNL (2003) Are children of young mothers disadvantaged because of their mother’s age or family background? Child Dev 74(2):465–474CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ayesha C. Sujan
    • 1
    Email author
  • Martin E. Rickert
    • 1
  • Quetzal A. Class
    • 1
  • Claire A. Coyne
    • 2
  • Paul Lichtenstein
    • 3
  • Catarina Almqvist
    • 3
    • 4
  • Henrik Larsson
    • 3
  • Arvid Sjölander
    • 3
  • Benjamin B. Lahey
    • 5
  • Carol van Hulle
    • 6
  • Irwin Waldman
    • 7
  • A. Sara Öberg
    • 3
    • 8
  • Brian M. D’Onofrio
    • 1
  1. 1.Department of Psychological and Brain SciencesIndiana UniversityBloomingtonUSA
  2. 2.Ann and Robert H. Lurie Children’s HospitalChicagoUSA
  3. 3.Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
  4. 4.Astrid Lindgren Children’s HospitalKarolinska University HospitalStockholmSweden
  5. 5.Department of Public Health SciencesUniversity of ChicagoChicagoUSA
  6. 6.Waisman CenterUniversity of Wisconsin-MadisonWIUSA
  7. 7.Department of PsychologyEmory UniversityAtlantaUSA
  8. 8.Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonUSA

Personalised recommendations