Behavior Genetics

, Volume 45, Issue 2, pp 157–170 | Cite as

Genetic and Environmental Contributions to the Relationships Between Brain Structure and Average Lifetime Cigarette Use

  • Elizabeth Prom-WormleyEmail author
  • Hermine H. M. Maes
  • J. Eric Schmitt
  • Matthew S. Panizzon
  • Hong Xian
  • Lisa T. Eyler
  • Carol E. Franz
  • Michael J. Lyons
  • Ming T. Tsuang
  • Anders M. Dale
  • Christine Fennema-Notestine
  • William S. Kremen
  • Michael C. Neale
Original Research


Chronic cigarette use has been consistently associated with differences in the neuroanatomy of smokers relative to nonsmokers in case–control studies. However, the etiology underlying the relationships between brain structure and cigarette use is unclear. A community-based sample of male twin pairs ages 51–59 (110 monozygotic pairs, 92 dizygotic pairs) was used to determine the extent to which there are common genetic and environmental influences between brain structure and average lifetime cigarette use. Brain structure was measured by high-resolution structural magnetic resonance imaging, from which subcortical volume and cortical volume, thickness and surface area were derived. Bivariate genetic models were fitted between these measures and average lifetime cigarette use measured as cigarette pack-years. Widespread, negative phenotypic correlations were detected between cigarette pack-years and several cortical as well as subcortical structures. Shared genetic and unique environmental factors contributed to the phenotypic correlations shared between cigarette pack-years and subcortical volume as well as cortical volume and surface area. Brain structures involved in many of the correlations were previously reported to play a role in specific aspects of networks of smoking-related behaviors. These results provide evidence for conducting future research on the etiology of smoking-related behaviors using measures of brain morphology.


Neuroimaging Twin study Smoking Adults Brain structure 



Hermine Maes, PI was supported by the grant no. R01 DA025109 05, Michael Neale, PI was supported by the grant no. T32 MH020030 16, William Kremen, PI was supported by the grant nos. R01 AG022381 11, R01 AG022982 04 and R01 AG018386 09, and Michael Lyons, PI was supported by the grant no. R01 AG018384 10.

Conflict of Interest

Elizabeth Prom-Wormley, Hermine H. M. Maes, J. Eric Schmitt, Matthew S. Panizzon, Hong Xian, Lisa T. Eyler, Carol E. Franz, Michael J. Lyons, Ming T. Tsuang, Anders M. Dale, Christine Fennema-Notestine, William S. Kremen, and Michael C. Neale declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

Institutional review boards at the University of California, San Diego and at Boston University approved all protocols, including the MRI scanning protocol. This study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Informed consent was obtained from all participants.


  1. Agaku IT, King BA, Dube SR, Centers for Disease C, Prevention (2014) Current cigarette smoking among adults—United States, 2005–2012. Morb Mortal Wkly Rep 63(2):29–34Google Scholar
  2. Agrawal A, Knopik VS, Pergadia ML, Waldron M, Bucholz KK, Martin NG, Heath AC, Madden PA (2008) Correlates of cigarette smoking during pregnancy and its genetic and environmental overlap with nicotine dependence. Nicotine Tob Res 10(4):567–578CrossRefPubMedGoogle Scholar
  3. Baare WF, Hulshoff Pol HE, Boomsma DI, Posthuma D, de Geus EJ, Schnack HG, van Haren NE, van Oel CJ, Kahn RS (2001) Quantitative genetic modeling of variation in human brain morphology. Cereb Cortex 11(9):816–824CrossRefPubMedGoogle Scholar
  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57(1):289–300Google Scholar
  5. Blokland GA, de Zubicaray GI, McMahon KL, Wright MJ (2012) Genetic and environmental influences on neuroimaging phenotypes: a meta-analytical perspective on twin imaging studies. Twin Res Hum Genet 15(3):351–371CrossRefPubMedPubMedCentralGoogle Scholar
  6. Breiter HC, Rosen BR (1999) Functional magnetic resonance imaging of brain reward circuitry in the human. Ann NY Acad Sci 877:523–547CrossRefPubMedGoogle Scholar
  7. Brody AL, Mandelkern MA, Jarvik ME, Lee GS, Smith EC, Huang JC, Bota RG, Bartzokis G, London ED (2004a) Differences between smokers and nonsmokers in regional gray matter volumes and densities. Biol Psychiatry 55(1):77–84CrossRefPubMedGoogle Scholar
  8. Brody AL, Olmstead RE, London ED, Farahi J, Meyer JH, Grossman P, Lee GS, Huang J, Hahn EL, Mandelkern MA (2004b) Smoking-induced ventral striatum dopamine release. Am J Psychiatry 161(7):1211–1218CrossRefPubMedGoogle Scholar
  9. Centers for Disease C, Prevention (2011) Quitting smoking among adults—United States, 2001–2010. Morb Mortal Wkly Rep 60(44):1513–1519Google Scholar
  10. Chen WJ, Edwards RB, Romero RD, Parnell SE, Monk RJ (2003) Long-term nicotine exposure reduces Purkinje cell number in the adult rat cerebellar vermis. Neurotoxicol Teratol 25(3):329–334CrossRefPubMedGoogle Scholar
  11. Chen X, Wen W, Anstey KJ, Sachdev PS (2006) Effects of cerebrovascular risk factors on gray matter volume in adults aged 60-64 years: a voxel-based morphometric study. Psychiatry Res 147(2–3):105–114CrossRefPubMedGoogle Scholar
  12. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194CrossRefPubMedGoogle Scholar
  13. Das D, Cherbuin N, Anstey KJ, Sachdev PS, Easteal S (2012) Lifetime cigarette smoking is associated with striatal volume measures. Addict Biol 17(4):817–825CrossRefPubMedGoogle Scholar
  14. David SP, Munafo MR, Johansen-Berg H, Smith SM, Rogers RD, Matthews PM, Walton RT (2005) Ventral striatum/nucleus accumbens activation to smoking-related pictorial cues in smokers and nonsmokers: a functional magnetic resonance imaging study. Biol Psychiatry 58(6):488–494CrossRefPubMedPubMedCentralGoogle Scholar
  15. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980CrossRefPubMedGoogle Scholar
  16. Ducci F, Kaakinen M, Pouta A, Hartikainen AL, Veijola J, Isohanni M, Charoen P, Coin L, Hoggart C, Ekelund J, Peltonen L, Freimer N, Elliott P, Schumann G, Jarvelin MR (2011) TTC12-ANKK1-DRD2 and CHRNA5-CHRNA3-CHRNB4 influence different pathways leading to smoking behavior from adolescence to mid-adulthood. Biol Psychiatry 69(7):650–660CrossRefPubMedPubMedCentralGoogle Scholar
  17. Eisen SA, True WR, Goldberg J, Henderson W, Robinette CD (1987) The Vietnam Era Twin (VET) registry: method of construction. Acta Geneticae Medicae et Gemellologiae 36:61–66PubMedGoogle Scholar
  18. Eisen S, Neuman R, Goldberg J, Rice J, True W (1989) Determining zygosity in the Vietnam Era Twin registry: an approach using questionnaires. Clin Genet 35(6):423–432CrossRefPubMedGoogle Scholar
  19. Eyler LT, Prom-Wormley E, Panizzon MS, Kaup AR, Fennema-Notestine C, Neale MC, Jernigan TL, Fischl B, Franz CE, Lyons MJ, Grant M, Stevens A, Pacheco J, Perry ME, Schmitt JE, Seidman LJ, Thermenos HW, Tsuang MT, Chen CH, Thompson WK, Jak A, Dale AM, Kremen WS (2011) Genetic and environmental contributions to regional cortical surface area in humans: a magnetic resonance imaging twin study. Cereb Cortex 21(10):2313–2321CrossRefPubMedPubMedCentralGoogle Scholar
  20. Eyler LT, Chen CH, Panizzon MS, Fennema-Notestine C, Neale MC, Jak A, Jernigan TL, Fischl B, Franz CE, Lyons MJ, Grant M, Prom-Wormley E, Seidman LJ, Tsuang MT, Fiecas MJ, Dale AM, Kremen WS (2012) A comparison of heritability maps of cortical surface area and thickness and the influence of adjustment for whole brain measures: a magnetic resonance imaging twin study. Twin Res Hum Genet 15(3):304–314CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fagerstrom KO, Schneider NG (1989) Measuring nicotine dependence: a review of the Fagerstrom Tolerance Questionnaire. J Behav Med 12(2):159–182CrossRefPubMedGoogle Scholar
  22. Ferrea S, Winterer G (2009) Neuroprotective and neurotoxic effects of nicotine. Pharmacopsychiatry 42(6):255–265CrossRefPubMedGoogle Scholar
  23. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97(20):11050–11055CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2):195–207CrossRefPubMedGoogle Scholar
  25. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355CrossRefPubMedGoogle Scholar
  26. Fischl B, Salat DH, van der Kouwe AJ, Makris N, Segonne F, Quinn BT, Dale AM (2004a) Sequence-independent segmentation of magnetic resonance images. Neuroimage 23(Suppl 1):S69–S84CrossRefPubMedGoogle Scholar
  27. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004b) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22CrossRefPubMedGoogle Scholar
  28. Franklin TR, Wetherill RR, Jagannathan K, Johnson B, Mumma J, Hager N, Rao H, Childress AR (2014) The effects of chronic cigarette smoking on gray matter volume: influence of sex. PLoS ONE 9(8):e104102CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gallinat J, Meisenzahl E, Jacobsen LK, Kalus P, Bierbrauer J, Kienast T, Witthaus H, Leopold K, Seifert F, Schubert F, Staedtgen M (2006) Smoking and structural brain deficits: a volumetric MR investigation. Eur J Neurosci 24(6):1744–1750CrossRefPubMedGoogle Scholar
  30. Geschwind DH, Miller BL, DeCarli C, Carmelli D (2002) Heritability of lobar brain volumes in twins supports genetic models of cerebral laterality and handedness. Proc Natl Acad Sci USA 99(5):3176–3181CrossRefPubMedPubMedCentralGoogle Scholar
  31. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2(10):861–863CrossRefPubMedGoogle Scholar
  32. Glahn DC, Thompson PM, Blangero J (2007) Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function. Hum Brain Mapp 28(6):488–501CrossRefPubMedGoogle Scholar
  33. Goldberg J, Curran B, Vitek ME, Henderson WG, Boyko EJ (2002) The Vietnam Era Twin registry. Twin Res 5(5):476–481CrossRefPubMedGoogle Scholar
  34. Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159(10):1642–1652CrossRefPubMedPubMedCentralGoogle Scholar
  35. Henderson WG, Eisen SE, Goldberg J, True WR, Barnes JE, Vitek M (1990) The Vietnam Era Twin Registry: a resource for medical research. Pub Health Rep 105:368–373Google Scholar
  36. Im K, Lee JM, Lyttelton O, Kim SH, Evans AC, Kim SI (2008) Brain size and cortical structure in the adult human brain. Cereb Cortex 18(9):2181–2191CrossRefPubMedGoogle Scholar
  37. Jernigan TL, Gamst AC (2005) Changes in volume with age—consistency and interpretation of observed effects. Neurobiol Aging 26(9):1271–1274CrossRefPubMedGoogle Scholar
  38. Jernigan TL, Archibald SL, Fennema-Notestine C, Gamst AC, Stout JC, Bonner J, Hesselink JR (2001) Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging 22:581–594CrossRefPubMedGoogle Scholar
  39. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217–238CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kremen WS, Thompson-Brenner H, Leung YM, Grant MD, Franz CE, Eisen SA, Jacobson KC, Boake C, Lyons MJ (2006) Genes, environment, and time: the Vietnam Era Twin Study of Aging (VETSA). Twin Res Hum Genet 9(6):1009–1022CrossRefPubMedGoogle Scholar
  41. Kremen WS, Prom-Wormley E, Panizzon MS, Eyler LT, Fischl B, Neale MC, Franz CE, Lyons MJ, Pacheco J, Perry ME, Stevens A, Schmitt JE, Grant MD, Seidman LJ, Thermenos HW, Tsuang MT, Eisen SA, Dale AM, Fennema-Notestine C (2010) Genetic and environmental influences on the size of specific brain regions in midlife: the VETSA MRI study. Neuroimage 49(2):1213–1223CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kremen WS, Panizzon MS, Neale MC, Fennema-Notestine C, Prom-Wormley E, Eyler LT, Stevens A, Franz CE, Lyons MJ, Grant MD, Jak AJ, Jernigan TL, Xian H, Fischl B, Thermenos HW, Seidman LJ, Tsuang MT, Dale AM (2012) Heritability of brain ventricle volume: converging evidence from inconsistent results. Neurobiol Aging 33(1):1–8CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kremen WS, Franz CE, Lyons MJ (2013a) VETSA: the Vietnam Era Twin Study of Aging. Twin Res Hum Genet 16(1):399–402CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kremen WS, Franz CE, Lyons MJ (2013b) VETSA: the Vietnam Era Twin Study of Aging—ADDENDUM. Twin Res Hum Genet 16(1):403CrossRefPubMedGoogle Scholar
  45. Li MD, Cheng R, Ma JZ, Swan GE (2003) A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 98(1):23–31CrossRefPubMedGoogle Scholar
  46. Longstreth WT Jr., Arnold AM, Manolio TA, Burke GL, Bryan N, Jungreis CA, O’Leary D, Enright PL, Fried L (2000) Clinical correlates of ventricular and sulcal size on cranial magnetic resonance imaging of 3,301 elderly people. The Cardiovascular Health Study. Collaborative Research Group. Neuroepidemiology 19(1):30–42Google Scholar
  47. May A, Hajak G, Ganssbauer S, Steffens T, Langguth B, Kleinjung T, Eichhammer P (2007) Structural brain alterations following 5 days of intervention: dynamic aspects of neuroplasticity. Cereb Cortex 17(1):205–210CrossRefPubMedGoogle Scholar
  48. Menossi HS, Goudriaan AE, de Azevedo-Marques Perico C, Nicastri S, de Andrade AG, D’Elia G, Li CS, Castaldelli-Maia JM (2013) Neural bases of pharmacological treatment of nicotine dependence—insights from functional brain imaging: a systematic review. CNS drugs 27:921–941CrossRefPubMedGoogle Scholar
  49. Neale MC, Boker SM, Xie G, Maes HH (2006) Mx: statistical modeling, 6th edn. Department of Psychiatry, Virginia Commonwealth University, RichmondGoogle Scholar
  50. Nichols RC, Bilbro WC Jr (1966) The diagnosis of twin zygosity. Acta genetica et statistica medica 16(3):265–275PubMedGoogle Scholar
  51. O’Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F, Kobal G, Renner B, Ahne G (2000) Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex. Neuroreport 11(2):399–403CrossRefPubMedGoogle Scholar
  52. Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384(2):312–320CrossRefPubMedGoogle Scholar
  53. Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, Jacobson K, Lyons MJ, Grant MD, Franz CE, Xian H, Tsuang M, Fischl B, Seidman L, Dale A, Kremen WS (2009) Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex 19(11):7Google Scholar
  54. Peeters H, Van Gestel S, Vlietinck R, Derom C, Derom R (1998) Validation of a telephone zygosity questionnaire in twins of known zygosity. Behav Genet 28(3):159–163CrossRefPubMedGoogle Scholar
  55. Peper JS, Brouwer RM, Boomsma DI, Kahn RS, Hulshoff Pol HE (2007) Genetic influences on human brain structure: a review of brain imaging studies in twins. Hum Brain Mapp 28(6):464–473CrossRefPubMedGoogle Scholar
  56. Pergadia ML, Heath AC, Martin NG, Madden PA (2006) Genetic analyses of DSM-IV nicotine withdrawal in adult twins. Psychol Med 36(7):963–972CrossRefPubMedGoogle Scholar
  57. Rose JE, Behm FM, Salley AN, Bates JE, Coleman RE, Hawk TC, Turkington TG (2007) Regional brain activity correlates of nicotine dependence. Neuropsychopharmacology 32(12):2441–2452CrossRefPubMedGoogle Scholar
  58. Sanabria-Diaz G, Melie-Garcia L, Iturria-Medina Y, Aleman-Gomez Y, Hernandez-Gonzalez G, Valdes-Urrutia L, Galan L, Valdes-Sosa P (2010) Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks. Neuroimage 50(4):1497–1510CrossRefPubMedGoogle Scholar
  59. Schmitt JE, Eyler LT, Giedd JN, Kremen WS, Kendler KS, Neale MC (2007) Review of twin and family studies on neuroanatomic phenotypes and typical neurodevelopment. Twin Res Hum Genet 10(5):683–694CrossRefPubMedPubMedCentralGoogle Scholar
  60. Schoenborn CA, Heyman KM (2009) Health characteristics of adults aged 55 years and over: United States, 2004–2007. Natl Health Stat Report (16):1–31Google Scholar
  61. Seshadri S, Wolf PA, Beiser A, Elias MF, Au R, Kase CS, D’Agostino RB, DeCarli C (2004) Stroke risk profile, brain volume, and cognitive function: the Framingham Offspring Study. Neurology 63(9):1591–1599CrossRefPubMedGoogle Scholar
  62. Smith KS, Berridge KC, Aldridge JW (2011) Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc Natl Acad Sci USA 108(27):E255–E264CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW (2004) Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 24:8223–8231CrossRefPubMedGoogle Scholar
  64. Thompson PM, Cannon TD, Narr KL, van Erp T, Poutanen VP, Huttunen M, Lonnqvist J, Standertskjold-Nordenstam CG, Kaprio J, Khaledy M, Dail R, Zoumalan CI, Toga AW (2001) Genetic influences on brain structure. Nat Neurosci 4(12):1253–1258CrossRefPubMedGoogle Scholar
  65. Trauth JA, Seidler FJ, McCook EC, Slotkin TA (1999) Adolescent nicotine exposure causes persistent upregulation of nicotinic cholinergic receptors in rat brain regions. Brain Res 851(1–2):9–19CrossRefPubMedGoogle Scholar
  66. Trauth JA, McCook EC, Seidler FJ, Slotkin TA (2000) Modeling adolescent nicotine exposure: effects on cholinergic systems in rat brain regions. Brain Res 873(1):18–25CrossRefPubMedGoogle Scholar
  67. Volkow ND, Fowler JS, Wang GJ (2003) Positron emission tomography and single-photon emission computed tomography in substance abuse research. Semin Nucl Med 33(2):114–128CrossRefPubMedGoogle Scholar
  68. Walhovd KB, Fjell AM, Reinvang I, Lundervold A, Fischl B, Salat D, Quinn BT, Makris N, Dale AM (2005) Cortical volume and speed-of-processing are complementary in prediction of performance intelligence. Neuropsychologia 43(5):704–713CrossRefPubMedGoogle Scholar
  69. Wang JC, Cruchaga C, Saccone NL, Bertelsen S, Liu P, Budde JP, Duan W, Fox L, Grucza RA, Kern J, Mayo K, Reyes O, Rice J, Saccone SF, Spiegel N, Steinbach JH, Stitzel JA, Anderson MW, You M, Stevens VL, Bierut LJ, Goate AM, Collaborators C, Collaborators G (2009) Risk for nicotine dependence and lung cancer is conferred by mRNA expression levels and amino acid change in CHRNA5. Hum Mol Genet 18(16):3125–3135CrossRefPubMedPubMedCentralGoogle Scholar
  70. Xian H, Scherrer JF, Eisen SA, Lyons MJ, Tsuang M, True WR, Bucholz KK (2007) Nicotine dependence subtypes: association with smoking history, diagnostic criteria and psychiatric disorders in 5440 regular smokers from the Vietnam Era Twin Registry. Addict Behav 32(1):137–147CrossRefPubMedGoogle Scholar
  71. Xu Z, Seidler FJ, Ali SF, Slikker W Jr, Slotkin TA (2001) Fetal and adolescent nicotine administration: effects on CNS serotonergic systems. Brain Res 914(1–2):166–178CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Elizabeth Prom-Wormley
    • 1
    • 2
    Email author
  • Hermine H. M. Maes
    • 1
    • 3
  • J. Eric Schmitt
    • 1
    • 14
  • Matthew S. Panizzon
    • 4
    • 5
  • Hong Xian
    • 6
    • 7
  • Lisa T. Eyler
    • 4
    • 11
  • Carol E. Franz
    • 4
    • 5
  • Michael J. Lyons
    • 8
  • Ming T. Tsuang
    • 4
    • 5
  • Anders M. Dale
    • 9
    • 12
  • Christine Fennema-Notestine
    • 4
    • 9
  • William S. Kremen
    • 4
    • 5
    • 10
  • Michael C. Neale
    • 1
    • 13
  1. 1.Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondUSA
  2. 2.Division of Epidemiology, Department of Family Medicine and Population HealthVirginia Commonwealth UniversityRichmondUSA
  3. 3.Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondUSA
  4. 4.Department of PsychiatryUniversity of California, San DiegoLa JollaUSA
  5. 5.Center for Behavioral Genomics Twin Research LaboratoryUniversity of California, San DiegoLa JollaUSA
  6. 6.Department of StatisticsSt. Louis UniversitySt. LouisUSA
  7. 7.Research ServiceVA St. Louis Healthcare SystemSt. LouisUSA
  8. 8.Department of Psychology and Brain SciencesBoston UniversityBostonUSA
  9. 9.Department of RadiologyUniversity of California, San DiegoLa JollaUSA
  10. 10.Center of Excellence for Stress and Mental HealthVA San Diego Healthcare SystemLa JollaUSA
  11. 11.Mental Illness Research Education and Clinical CenterVA San Diego Healthcare SystemSan DiegoUSA
  12. 12.Department of NeurosciencesUniversity of California, San DiegoLa JollaUSA
  13. 13.Department of PsychiatryVirginia Commonwealth UniversityRichmondUSA
  14. 14.Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations