Advertisement

Behavior Genetics

, Volume 45, Issue 2, pp 236–244 | Cite as

Rhodopsin Gene Polymorphism Associated with Divergent Light Environments in Atlantic Cod

  • Christophe PampoulieEmail author
  • Sigurlaug Skirnisdottir
  • Bastiaan Star
  • Sissel Jentoft
  • Ingibjörg G. Jónsdóttir
  • Einar Hjörleifsson
  • Vilhjálmur Thorsteinsson
  • Ólafur K. Pálsson
  • Paul R. Berg
  • Øivind Andersen
  • Steinunn Magnusdottir
  • Sarah J. Helyar
  • Anna K. Daníelsdóttir
Original Research

Abstract

The spectral sensitivity of visual pigments in vertebrate eyes is optimized for specific light conditions. One of such pigments, rhodopsin (RH1), mediates dim-light vision. Amino acid replacements at tuning sites may alter spectral sensitivity, providing a mechanism to adapt to ambient light conditions and depth of habitat in fish. Here we present a first investigation of RH1 gene polymorphism among two ecotypes of Atlantic cod in Icelandic waters, which experience divergent light environments throughout the year due to alternative foraging behaviour. We identified one synonymous single nucleotide polymorphism (SNP) in the RH1 protein coding region and one in the 3′ untranslated region (3′-UTR) that are strongly divergent between these two ecotypes. Moreover, these polymorphisms coincided with the well-known panthophysin (Pan I) polymorphism that differentiates coastal and frontal (migratory) populations of Atlantic cod. While the RH1 SNPs do not provide direct inference for a specific molecular mechanism, their association with this dim-sensitive pigment indicates the involvement of the visual system in local adaptation of Atlantic cod.

Keywords

Atlantic cod Rhodopsin Pantophysin Behaviour type Ecotype Divergence 

Notes

Acknowledgments

We acknowledge funding from the EU-project CODYSSEY (Q5RS-2002-00813) for the tagging experiment and from the Icelandic Ministry of Innovation and Fisheries (Verkefnasjóður Sjávarútvegsins grant, 2011–2014) for the genetic work.

Conflict of Interest

Christophe Pampoulie, Sigurlaug Skirnisdottir, Bastiaan Star, Sissel Jentoft, Ingibjörg G. Jónsdóttir, Einar Hjörleifsson, Vilhjálmur Thorsteinsson, Ólafur K. Pálsson, Paul R. Berg, Øivind Andersen, Steinunn Magnusdottir, Sarah J. Helyar, and Anna K. Daníelsdóttir declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

The tagging was carried out in strict accordance with the recommendations by the Icelandic Committee for Welfare of Experimental Animals, Chief Veterinary Office at the Ministry of Agriculture, Reykjavik Iceland, under a surgery permit license (No. 0304-1901) issued to V. Thorsteinsson. Informed consent was obtained from all individual participants included in the present study.

Supplementary material

10519_2014_9701_MOESM1_ESM.doc (118 kb)
Supplementary material 1 (DOC 118 kb)

References

  1. Antao L, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a FST-outlier method. BMC Bioinform 9:323–327CrossRefGoogle Scholar
  2. Beaumont M, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc Roy Soc Lond B 263:1619–1626CrossRefGoogle Scholar
  3. Brooker AL, Cook AM, Bentzen P, Wright JM, Doyle RW (1994) Organisation of microsatellites differs between mammals and cold-water teleost fishes. Can J Fish Aquat Sci 51:1959–1966CrossRefGoogle Scholar
  4. Brooks CC, Scherer PE, Cleveland K, Whittemore JL, Lodish HF, Cheatham B (2000) Pantophysin is a phosphoprotein component of adipocyte transport vesicles and associates with GLUT4-containing vesicles. J Biol Chem 275:2029–2036CrossRefPubMedGoogle Scholar
  5. Chen WJ, Bonillo C, Lecointre G (2003) Repeatability of clades as criterion of reliability: a case study for molecular phylogeny of Acantomorpha (Teleostei) with large number of taxa. Mol Phylogenetics Evol 26:262–288CrossRefGoogle Scholar
  6. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  7. Ebert D, Andrew RL (2009) Rhodopsin population genetics and local adaptation: variable dim-light vision in sand gobies is illuminated. Mol Ecol 18:4140–4142CrossRefPubMedGoogle Scholar
  8. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  9. Fevolden SE, Pogson GH (1997) Genetic divergence at the synaptophysin (Syp I) locus among Norwegian coastal and North-east Arctic populations of Atlantic cod. J Fish Biol 51:895–908Google Scholar
  10. Godo OR, Michalsen K (2000) Migratory behaviour of north-east Arctic cod, studied by use of data storage tags. Fish Res 48:127–140CrossRefGoogle Scholar
  11. Grabowski TB, Thorsteinsson V, McAdam BJ, Marteinsdottir G (2011) Evidence of segregated spawning in a single marine fish stock: sympatric divergence of ecotypes in Icelandic cod? PLoS ONE 6:e17528CrossRefPubMedCentralPubMedGoogle Scholar
  12. Hemmer-Hansen J, Nielsen EE, Therkildsen NO, Taylor MI, Ogden R, Geffen A, Bekkevold D, Helyar S, Pampoulie C, Johansen T, Carvalho GR, FishPopTraceConsortium (2013) A genomic island linked to ecotype divergence in Atlantic cod. Mol Ecol 22:2653–2667CrossRefPubMedGoogle Scholar
  13. Jakobsdóttir KB, Jörundsdóttir D, Skírnisdóttir S, Hjörleifsdóttir S, Hreggviðsson GÓ, Daníelsdóttir AK, Pampoulie C (2006) Nine new polymorphic microsatellite loci for the amplification of archived otolith DNA of Atlantic cod, Gadus morhua L. Mol Ecol Notes 6:336–339CrossRefGoogle Scholar
  14. Jerlov N (1976) Marine optics. Elsevier, Amsterdam, pp 232. ISBN 0-444-41 490-8Google Scholar
  15. Karlsen BO, Klingan K, Emblem Å, Jørgensen TE, Jueterbock A, Furmanek T, Hoarau G, Johansen SD, Nordeide JT, Moum T (2013) Genomic divergence between the migratory and stationary ecotypes of Atlantic cod. Mol Ecol 22:5098–5111CrossRefPubMedGoogle Scholar
  16. Larmuseau MHD, Vancampenhout KIM, Raeymaekers JAM, Van Houdt JKJ, Volckaert FAM (2010) Differential modes of selection on the rhodopsin gene in coastal Baltic and North Sea populations of the sand goby, Pomatoschistus minutus. Mol Ecol 19:2256–2268CrossRefPubMedGoogle Scholar
  17. Lewontin RC (1964) The interaction of selection and linkage. 1. General considerations; Heterotic models. Genetics 49:49–67PubMedCentralPubMedGoogle Scholar
  18. Lewontin RC, Kojima K (1960) The evolutionary dynamics of complex polymorphism. Evolution 14:458–472CrossRefGoogle Scholar
  19. Michiels N, Anthes N, Hart N, Herler J, Meixner A, Schleifenbaum F, Schulte G, Siebeck UE, Sprenger D, Wucherer M (2008) Red fluorescence in reef fish: a novel signalling mechanism? BMC Ecol 8:16CrossRefPubMedCentralPubMedGoogle Scholar
  20. Miller KM, Le KD, Beacham TD (2000) Development of tri- and tetranucleotide repeat microsatellite loci in Atlantic cod (Gadus morhua). Mol Ecol 9:238–239CrossRefPubMedGoogle Scholar
  21. Nakamura Y, Mori K, Saitoh K, Oshima K, Mekuchi M, Sugaya T, Shigenobu Y, Ojima N, Muta S, Fujiwara A, Yasuike M, Oohara I, Hirakawa H, Chowdhury VS, Kobayashi T, Nakajima K, Sano M, Wada T, Tashiro K, Ikeo K, Hattori M, Kuhara S, Gojobori T, Inouye K (2013) Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna. Proc Natl Acad Sci 110:11061–11066CrossRefPubMedCentralPubMedGoogle Scholar
  22. Nordeide JT (1998) Coastal cod and north-east Arctic cod—do they mingle at the spawning grounds in Lofoten? Sarsia 83:373–379Google Scholar
  23. Ólafsson K, Hjörleifsdóttir S, Pampoulie C, Hreggviðsson GÓ, Guðjónsson S (2010) Novel set of multiplex assays (SalPrint15) for efficient analysis of 15 microsatellite loci of contemporary samples of the Atlantic salmon (Salmo salar). Mol Ecol Resour 10:533–537CrossRefPubMedGoogle Scholar
  24. O’Quin KE, Smith DA, Naseer Z, Schulte J, Engel SD, Loh Y-HE, Streelman JT, Boore JL, Carleton KL (2011) Divergence in cis-regulatory sequences surrounding the opsin gene arrays of African cichlid fishes. BMC Evol Biol 11:120CrossRefPubMedCentralPubMedGoogle Scholar
  25. O’Reilly PT, Canino MF, Bailey KM, Bentzen P (2000) Isolation of twenty low stutter di- and tetranucleotide microsatellites for population analyses of walleye pollock and other gadoids. J Fish Biol 56:1074–1086CrossRefGoogle Scholar
  26. Pálsson ÓK, Thorsteinsson V (2003) Migration patterns, ambient temperature, and growth of Icelandic cod (Gadus morhua): evidence from storage tag data. Can J Fish Aquat Sci 60:1409–1423CrossRefGoogle Scholar
  27. Pampoulie C, Ruzzante DE, Chosson V, Jörundsdóttir TD, Taylor L, Thorsteinsson V, Daníelsdóttir AK, Marteinsdóttir G (2006) The genetic structure of Atlantic cod (Gadus morhua) around Iceland: insight from microsatellites, the Pan I locus, and tagging experiments. Can J Fish Aquat Sci 63:2660–2674CrossRefGoogle Scholar
  28. Pampoulie C, Jakobsdóttir KB, Marteinsdóttir G, Thorsteinsson V (2008) Are vertical behaviour patterns related to the pantophysin locus in the Atlantic cod (Gadus morhua L.)? Behav Genet 38:76–81CrossRefPubMedGoogle Scholar
  29. Parmley JL, Hurst LD (2007) How do synonymous mutations affect fitness? BioEssays 29:515–519CrossRefPubMedGoogle Scholar
  30. Pogson GH, Mesa KA (2004) Positive Darwinian selection at the pantophysin (Pan I) locus in marine gadid fishes. Mol Biol Evol 2165–2175Google Scholar
  31. Pogson GH, Mesa KA, Boutilier RG (1995) Genetic population structure and gene flow in the Atlantic cod Gadus morhua: a comparison of allozyme and nuclear RFLP loci. Genetics 139:375–385PubMedCentralPubMedGoogle Scholar
  32. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  33. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefPubMedGoogle Scholar
  34. Sarvas TH, Fevolden SE (2005) Pantophysin (Pan I) locus divergence between inshore v. offshore and northern v. southern populations of Atlantic cod in the North-east Atlantic. J Fish Biol 67:444–469CrossRefGoogle Scholar
  35. Shum P, Pampoulie C, Sacchi C, Mariani S (2014) Divergence by depth in an oceanic fish. PeerJ 2:e525CrossRefPubMedCentralPubMedGoogle Scholar
  36. Sivasundar A, Palumbi SR (2010) Paralle amino acid replacements in the rhodopsins of the rockfishes (Sebastes spp.) associated with shifts in habitat depth. J Evol Biol 23:1159–1169CrossRefPubMedGoogle Scholar
  37. Skarstein TH, Westgaard JI, Fevolden SE (2007) Comparing microsatellite variation in north-east Atlantic cod (Gadus morhua L.) to genetic structuring as revealed by the pantophysin (Pan I) locus. J Fish Biol 70:271–290CrossRefGoogle Scholar
  38. Skírnisdóttir S, Pampoulie C, Hauksdóttir S, Schulte I, Ólafsson K, Hreggviðsson GÓ, Hjörleifsdóttir S (2008) Characterisation of 18 new polymorphic microsatellite loci in Atlantic cod (Gadus morhua L.). Mol Ecol Resour 8:1503–1505CrossRefPubMedGoogle Scholar
  39. Solé X, Guinó E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22:1928–1929CrossRefPubMedGoogle Scholar
  40. Spady TC, Seehausen O, Loew ER, Jordan RC, Kocher TD, Carleton KL (2005) Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species. Mol Biol Evol 22:1412–1422CrossRefPubMedGoogle Scholar
  41. Stenvik J, Wesmajervi MS, Damsgard B, Delghandi M (2006) Genotyping of pantophysin I (Pan I) of Atlantic cod (Gadus morhua L.) by allele-specific PCR. Mol Ecol Notes 6:272–275CrossRefGoogle Scholar
  42. Sugawara T, Terai Y, Imai H, Turner GF, Koblmuller S, Sturmbauer C, Shichida Y, Okada N (2005) Parallelism of amino acid changes at the RH1 affecting spectral sensitivity among deep-water cichlids from lakes Tanganyika and Malawi. Proc Natl Acad Sci 102:5448–5453CrossRefPubMedCentralPubMedGoogle Scholar
  43. Terai Y, Seehausen O, Sasaki T, Takahashi K, Mizoiri S, Sugawara T, Sato T, Watanabe M, Konijnendijk N, Mrosso HDJ, Tachida H, Imai H, Shichida Y, Okada N (2006) Divergent selection on opsins drives incipient speciation in Lake Victoria cichlids. PLoS Biol 4:e433CrossRefPubMedCentralPubMedGoogle Scholar
  44. Therkildsen NO, Hemmer-Hansen J, Hedeholm RB, Wisz MS, Pampoulie C, Meldrup D, Bonanomi S, Retzel A, Olsen SM, Nielsen EE (2013) Spatiotemporal SNP analysis reveals pronounced biocomplexity at the northern range margin of the Atlantic cod Gadus morhua. Evol Appl 6:690–705CrossRefPubMedCentralPubMedGoogle Scholar
  45. Thorsteinsson V, Pálsson ÓK, Jónsdóttir IG, Pampoulie C (2012) Consistency in the behaviour types of the Atlantic cod: repeatability, timing of migration and geo-location. Mar Ecol Prog Ser 462:251–260CrossRefGoogle Scholar
  46. Thurman HV, Trujillo AP (2004) Introductory Oceanography, 10th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  47. Tyler PA (2003) Ecosystems of the deep oceans, 1st edn, Elsevier p 532Google Scholar
  48. Venetianer P (2012) Are synonymous codons indeed synonymous? Biol Mol Concepts 3:21–28Google Scholar
  49. Warrant EJ, Locket NA (2004) Vision in the deep sea. Biol Rev 79:671–712CrossRefPubMedGoogle Scholar
  50. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  51. Yokoyama S, Takenaka N (2004) The molecular basis of adaptive evolution of Squirrelfish rhodopsins. Mol Biol Evol 21:2071–2078CrossRefPubMedGoogle Scholar
  52. Yokoyama S, Tada T, Zhang H, Britt L (2008) Elucidation of phenotypic adaptations: molecular analyses of dim-light vision proteins in vertebrates. Proc Natl Acad Sci 105:13480–13485CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Christophe Pampoulie
    • 1
    Email author
  • Sigurlaug Skirnisdottir
    • 2
  • Bastiaan Star
    • 3
  • Sissel Jentoft
    • 3
  • Ingibjörg G. Jónsdóttir
    • 1
  • Einar Hjörleifsson
    • 1
  • Vilhjálmur Thorsteinsson
    • 1
  • Ólafur K. Pálsson
    • 1
  • Paul R. Berg
    • 3
  • Øivind Andersen
    • 4
  • Steinunn Magnusdottir
    • 2
  • Sarah J. Helyar
    • 2
  • Anna K. Daníelsdóttir
    • 2
  1. 1.Marine Research InstituteReykjavíkIceland
  2. 2.Matis Ltd.ReykjavíkIceland
  3. 3.Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloOsloNorway
  4. 4.NOFIMAÅsNorway

Personalised recommendations